Semiconductors
High-reliability discrete products and engineering services since 1977

MJ10020, MJ10021

NPN SILICON DARLINGTON TRANSISTORS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS ($\mathrm{Sn} / \mathrm{Pb}$ plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Characteristics	Symbol	MJ10020	MJ10021	Unit
Collector-emitter voltage	$V_{\text {ceo }}$	200	250	Vdc
Collector-emitter voltage	$\mathrm{V}_{\text {cev }}$	300	350	Vdc
Emitter base voltage	$V_{\text {Eb }}$	8.0		Vdc
$\begin{aligned} & \text { Collector current - continuous } \\ & \text { - peak }{ }^{(1)} \end{aligned}$	$\begin{aligned} & \mathrm{Ic} \\ & \mathrm{I}_{\mathrm{CM}} \end{aligned}$	$\begin{gathered} 60 \\ 100 \end{gathered}$		Adc
Base current - continuous - peak ${ }^{(1)}$	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{I}_{\mathrm{BM}} \end{gathered}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		Adc
Total power dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ $@ T_{C}=100^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 250 \\ & 143 \\ & 1.43 \end{aligned}$		Watts Watts W/ ${ }^{\circ} \mathrm{C}$
Operating and storage junction temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to 200		${ }^{\circ} \mathrm{C}$
THERMAL CHARACTERISTICS				
Characteristic	Symbol	Maximum		Unit
Thermal resistance, junction to case	Reлс	0.7		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum lead temperature for soldering purposes: $1 / 8^{\prime \prime}$ from case for 5 seconds	T_{L}	275		${ }^{\circ} \mathrm{C}$

(1) Pulse test: Pulse width $=5 \mathrm{~ms}$, duty cycle $\leq 10 \%$.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristics		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Collector-emitter sustaining voltage $\left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	MJ10020 MJ10021	$\mathrm{V}_{\text {ceo(sus) }}$	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	-	-	Vdc
Collector-cutoff current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CEV}}=\text { Rated value }, \mathrm{V}_{\mathrm{BE}(\text { off })}=1.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{CEV}}=\text { Rated value }, \mathrm{V}_{\mathrm{BE}(\text { off })}=1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}\right) \end{aligned}$		Icev		-	$\begin{gathered} 0.25 \\ 5.0 \end{gathered}$	mAdc
Collector cutoff current $\left(\mathrm{V}_{\mathrm{CE}}=\text { Rated } \mathrm{V}_{\mathrm{CEV}}, \mathrm{R}_{\mathrm{BE}}=50 \Omega, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right)$		$I_{\text {cer }}$	-	-	5.0	mAdc
Emitter cutoff current $\left(\mathrm{V}_{\mathrm{EB}}=2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$		Iebo	-	-	175	mAdc
ON CHARACTERISTICS						
DC Current Gain ($\mathrm{I}_{\mathrm{C}}=15 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}$)		$\mathrm{hfe}^{\text {f }}$	75	-	1000	-
Collector-emitter saturation voltage $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=30 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=60 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=4.0 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=30 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1.2 \mathrm{Adc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$		$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	-	$\begin{aligned} & 2.2 \\ & 4.0 \\ & 2.4 \end{aligned}$	Vdc

Semiconductors
High-reliability discrete products and engineering services since 1977

MJ10020, MJ10021

NPN SILICON DARLINGTON TRANSISTORS

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{c}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$ unless otherwise noted)

- $=$ GIRROM

Semiconductors
High-reliability discrete products and engineering services since 1977

MJ10020, MJ10021

NPN SILICON DARLINGTON TRANSISTORS

MECHANICAL CHARACTERISTICS

Case:	TO-3
Marking:	Alpha-numeric
Polarity:	See below

	TO-3			
	Inches		Millimeters	
	Min	Max	Min	Max
CD	-	0.875	-	22.220
CH	0.250	0.380	6.860	9.650
HT	0.060	0.135	1.520	3.430
BW	-	1.050	-	26.670
HD	0.131	0.188	3.330	4.780
LD	0.038	0.043	0.970	1.090
LL	0.312	0.500	7.920	12.700
BL	1.550	REF	39.370 REF	
MHS	1.177	1.197	29.900	30.400
PS	0.420	0.440	10.670	11.180
S1	0.655	0.675	16.640	17.150

Figure 1. DC Current Gain

Semiconductors
High-reliability discrete products and engineering services since 1977

MJ10020, MJ10021

NPN SILICON DARLINGTON TRANSISTORS

Figure 3. Collector-Emitter Saturation Voltage

Figure 5. Collector Cutoff Region

Figure 7. Inductive Switching Measurements

Figure 4. Base-Emitter Voltage

Figure 6. Output Capacitance

Figure 8. Typical Peak Reverse Base Current

Semiconductors
High-reliability discrete products and engineering services since 1977

MJ10020, MJ10021

NPN SILICON DARLINGTON TRANSISTORS

Figure 9. Typical Inductive Switching Times

Figure 10. Typical Turn-On Switching Times

Figure 11. Typical Turn-Off Switching Times

Figure 12. Thermal Response

High-reliability discrete products and engineering services since 1977

MJ10020, MJ10021

NPN SILICON DARLINGTON TRANSISTORS

Figure 13. Maximum Forward Bias Safe Operating Area

Figure 14. Maximum RBSOA, Reverse Bias Safe Operating Area

Figure 15. Power Derating

