

2N4913-2N4915

NPN SILICON MEDIUM POWER TRANSISTORS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

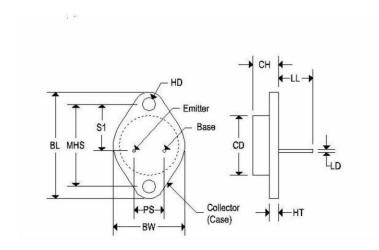
MAXIMUM RATINGS

Rating	Symbol	2N4913	2N4914	2N4915	Unit
Collector-emitter voltage	V _{CEO}	40	60	80	Vdc
Collector-base voltage	V _{CB}	40	60	80	Vdc
Emitter-base voltage	V _{EB}	5.0			Vdc
Collector current – continuous	lc	5.0			Adc
Base current	I _B	1.0			Adc
Total device dissipation T _C = 25°C	Pn	87.5			Watts
Derate above 25°C	PD	0.5			W/°C
Operating and storage junction temperature range	T _J , T _{stg}	-65 to +200			°C
Thermal resistance, junction to case	Өлс	2.0			°C/W

ELECTRICAL CHARACTERSITICS (T_A = 25°C unless otherwise specified)

Characteristics		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector emitter sustaining voltage					
$(I_C = 0.2Adc, I_B = 0)$	2N4913	D	40	-	Vdc
	2N4914	B _{VCEO(sus)}	60	-	
	2N4915		80	-	
Collector cutoff current		Iceo			mAdc
$(V_{CE} = Rated V_{CEO}, I_B = 0)$		ICEO	-	1.0	made
Collector cutoff current					
$(V_{CE} = Rated V_{CEO}, V_{BE(off)} = 1.5Vdc)$		I _{CEX}	-	1.0	mAdc
(V_{CE} = Rated V_{CEO} , $V_{BE(off)}$ = 1.5Vdc, T_C = 150°C)			-	2.0	
Collector cutoff current		,			mAdc
$(V_{CB} = Rated V_{CB}, I_E = 0)$		I _{CBO}	-	1.0	made
Emitter cutoff current					mAdc
$(V_{EB} = 5.0 Vdc, I_C = 0)$		I _{EBO}	-	1.0	
ON CHARACTERISTICS					
DC current gain (1)					
$(I_C = 2.5 Adc, V_{CE} = 2.0 Vdc)$		h_{FE}	25	100	-
$(I_C = 5.0 Adc, V_{CE} = 2.0 Vdc)$			7.0	-	
Collector emitter saturation voltage					
$(I_C = 2.5 Adc, I_B = 250 mAdc)$		$V_{CE(sat)}$	-	1.0	Vdc
$(I_C = 5.0 Adc, I_B = 1.0 Adc)$			-	1.5	
Base emitter saturation voltage		V			Vdc
$(I_C = 2.5 Adc, V_{CE} = 2.0 Adc)$		V _{BE(sat)}		1.4	Vuc
SMALL SIGNAL CHARACTERISTICS					
Current gain - bandwidth product		£			N 41.1-
$(I_C = 1.0Adc, V_{CE} = 10Vdc, f = 1.0MHz)$		f⊤	4.0	-	MHz

2N4913-2N4915

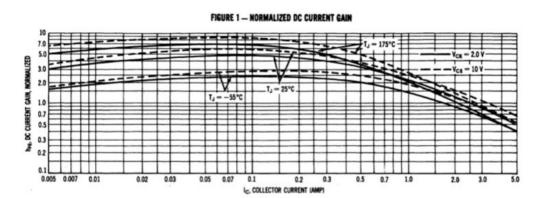

NPN SILICON MEDIUM POWER TRANSISTORS

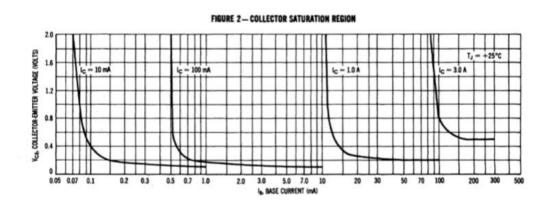
ELECTRICAL CHARACTERSITICS (T_A = 25°C unless otherwise specified)

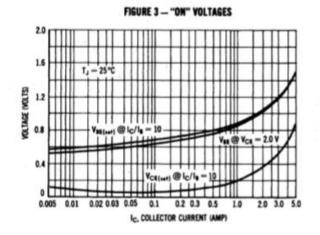
Characteristics	Symbol	Min	Max	Unit
Small signal current gain (I _C = 500mAdc, V _{CE} = 10Vdc, f = 1.0kHz)	h _{fe}	20	_	-

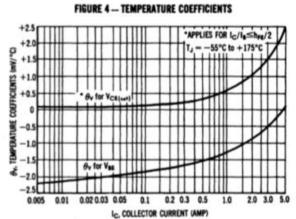
MECHANICAL CHARACTERISTICS

Case	TO-3
Marking	Alpha-numeric
Polarity	See below

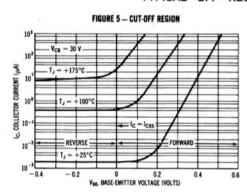



	TO-3				
	Inches		Millin	neters	
	Min	Max	Min	Max	
CD	-	0.875	-	22.220	
CH	0.250	0.380	6.860	9.650	
HT	0.060	0.135	1.520	3.430	
BW	-	1.050	-	26.670	
HD	0.131	0.188	3.330	4.780	
LD	0.038	0.043	0.970	1.090	
LL	0.312	0.500	7.920	12.700	
BL	1.550	REF	39.370 REF		
MHS	1.177	1.197	29.900	30.400	
PS	0.420	0.440	10.670	11.180	
S1	0.655	0.675	16.640	17.150	




2N4913-2N4915

NPN SILICON MEDIUM POWER TRANSISTORS



2N4913-2N4915

NPN SILICON MEDIUM POWER TRANSISTORS

TYPICAL "OFF" REGION CHARACTERISTICS

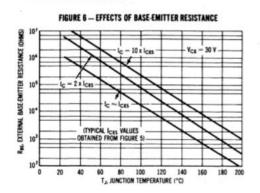
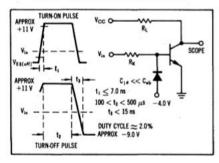



FIGURE 7 - SWITCHING TIME EQUIVALENT CIRCUIT

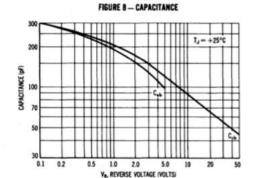
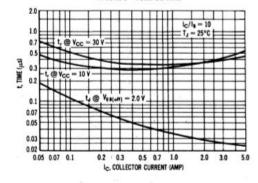
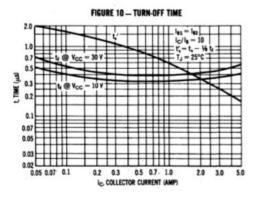
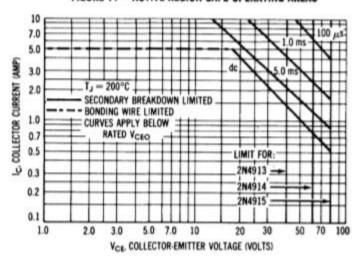
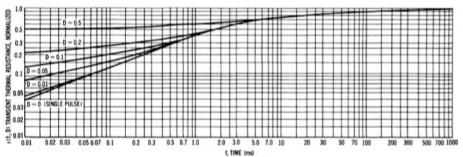




FIGURE 9 -TURN-ON TIME




2N4913-2N4915

NPN SILICON MEDIUM POWER TRANSISTORS

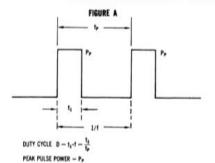

FIGURE 11 - ACTIVE-REGION SAFE OPERATING AREAS

FIGURE 12 - TRANSIENT THERMAL RESISTANCE

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

A train of periodical power pulses can be represented by the model as shown in Figure A. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 12 was calculated for various duty cycles.

To find $\theta_{JC}(t)$, multiply the value obtained from Figure 12 by the

Example: The 2N4913 is dissipating 100 watts under the following conditions: $t_1=0.1$ ms, $t_7=0.5$ ms. (D = 0.2)

Using Figure 12, at a pulse width of 0.1 ms and D = 0.2, the reading of r (t,,D) is 0.28.

The peak rise in junction temperature is therefore $\Delta T = r(t) \times P_r \times \theta_{JC} = 0.28 \times 100 \times 2.0 = 56 ^{\circ}C$