

Semiconductors
High-reliability discrete products and engineering services since 1977

2N3766-2N3767

NPN POWER SILICON TRANSISTORS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Ratings	Symbol	2N3766	2N3767	Units
Collector-Emitter Voltage	$V_{\text {ceo }}$	60	80	Vdc
Collector-Base Voltage	$V_{\text {cbo }}$	80	100	Vdc
Emitter-Base Voltage	$V_{\text {Ebo }}$	6.0		Vdc
Base Current	I_{B}	2.0		Adc
Collector Current	Ic	4.0		Adc
Total Power Dissipation @ $\mathrm{T}_{\mathrm{c}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$	P_{T}	25		W
Operating and Storage Temperature Range	$\mathrm{T}_{\text {op }}, \mathrm{T}_{\text {stg }}$	-65 to +200		${ }^{\circ} \mathrm{C}$
Maximum Thermal Resistance, Junction to Case	Rөлс	7.0		${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) Derate linearly $143 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ between $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}}=200^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Characteristics	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage $\begin{array}{ll}\mathrm{Ic}=\mathbf{1 0 0} \text { mAdc } & \text { 2N3766 } \\ & \text { 2N3767 }\end{array}$	$\mathrm{V}_{\text {(BR) }}$ ceo	$\begin{aligned} & 60 \\ & 80 \end{aligned}$		Vdc
Collector-Emitter Cutoff Current $\mathrm{V}_{\mathrm{CE}}=\mathbf{6 0} \mathrm{Vdc}$ 2N3766 $\mathrm{V}_{\mathrm{CE}}=80 \mathrm{Vdc}$ 2N3767	Iceo		$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\mu \mathrm{Adc}$
Collector-Emitter Cutoff Current	Icex		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\mu \mathrm{Adc}$
Collector-Base Cutoff Current $\mathbf{V}_{\mathrm{CB}}=\mathbf{8 0} \mathrm{Vdc}$ 2N3766 $\mathbf{V}_{\mathrm{CB}}=\mathbf{1 0 0} \mathrm{Vdc}$ 2N3767	$I_{\text {cbo }}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\mu \mathrm{Adc}$
Emitter-Base Cutoff Current $\mathrm{V}_{\mathrm{EB}}=6.0 \mathrm{Vdc}$	Iebo		500	$\mu \mathrm{Adc}$
ON CHARACTERISTICS ${ }^{(2)}$				
Forward-Current Transfer Ratio $\mathrm{Ic}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{cE}}=5.0 \mathrm{Vdc}$ $\mathrm{Ic}_{\mathrm{c}}=500 \mathrm{mAdc}, \mathrm{V}_{\mathrm{cE}}=5.0 \mathrm{Vdc}$ $\mathrm{Ic}_{\mathrm{c}}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}$	$\mathrm{hfE}_{\text {F }}$	$\begin{aligned} & 30 \\ & 40 \\ & 20 \end{aligned}$	160	
Collector-Emitter Saturation Voltage $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{Adc}$ $\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{Adc}$	$\mathrm{V}_{\text {cE(sat) }}$		$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	Vdc
Base-Emitter Voltage $\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}$	$\mathrm{V}_{\text {BEIOn }}$		1.5	Vdc
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small Signal Short Circuit Forward Current Transfer Ratio $\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=10 \mathrm{MHz}$	$\left\|h_{\text {fe }}\right\|$	1.0	8.0	

Semiconductors
High-reliability discrete products and engineering services since 1977

2N3766-2N3767

NPN POWER SILICON TRANSISTORS

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Characteristics	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Output Capacitance $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0,0.1 \mathrm{MHz} \leq \mathrm{f} \leq 1.0 \mathrm{MHz}$	Cobo		50	pF
SWITCHING CHARACTERISTICS				
Turn-On Time $\mathrm{V}_{\mathrm{cc}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{c}}=0.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.05 \mathrm{Adc}$	${ }^{\text {ton }}$		0.25	$\mu \mathrm{s}$
Turn-Off Time $\mathrm{V}_{\mathrm{cc}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{c}}=0.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{B}}=0.05 \mathrm{Adc}$	${ }^{\text {toff }}$		2.5	$\mu \mathrm{s}$
SAFE OPERATING AREA DC Tests $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, 1 \mathrm{Cycle}, \mathrm{t}=1.0 \mathrm{~s}$				
Test 1 $\mathrm{V}_{\mathrm{CE}}=6.25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=4.0 \mathrm{Adc}$ Test 2 $\mathrm{V}_{\mathrm{CE}}=20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.25 \mathrm{Adc} .$ Test 3 $\mathrm{V}_{\mathrm{CE}}=\mathbf{5 0} \mathrm{Vdc}, \mathrm{Ic}_{\mathrm{c}}=\mathbf{1 5 0} \mathbf{~ m A d c}$ $\mathrm{V}_{\mathrm{CE}}=\mathbf{6 5} \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=\mathbf{1 5 0} \mathbf{~ m A d c}$				

(2) Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

MECHANICAL CHARACTERISTICS

Case:	TO-66
Marking:	Alpha-Numeric
Polarity:	See Below

Dim	TO-66			
	Inches		Millimeters	
	Min	Max	Min	Max
BL	1.205	1.280	30.60	32.50
CD	0.445	0.557	11.303	14.148
CH	0.257	0.284	6.540	7.220
LL	0.374	0.413	9.500	10.50
BW	0.680	0.727	17.26	18.46
LD	0.030	0.036	0.760	0.920
HT	0.054	0.065	1.380	1.650
MHS	0.951	0.976	24.16	24.78
S1	0.545	0.614	13.84	15.60
HD	0.131	0.154	3.320	3.920
PS	0.191	0.210	4.860	5.340

