

NPN SILICON LOW POWER TRANSISTORS

High-reliability discrete products and engineering services since 1977

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

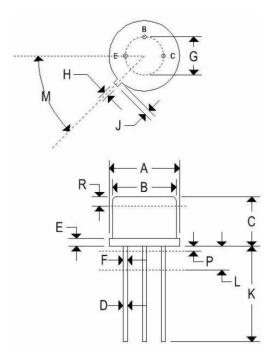
MAXIMUM RATINGS

Parameters		Symbol	Value	Unit
Collector-Base Voltage		V _{CBO}	40	V
Collector-Emitter Boltage		V _{CEO}	20	V
Emitter-Base Voltage		V _{EBO}	3	V
Collector Current		lc	400	mA
Continuous Base Current		IB	400	mA
Power Dissipation	T _A = 25°C T _c = 75°C	PD	1.0 2.5	w
Storage Temperature Range	e	t _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Collector Emitter Breakdown Voltage	$I_B = 5.00, R_{BE} = 10\Omega$	VBR(CER) ⁽¹⁾	40	-	-	V
Collector Emitter Sustaining Voltage	I _C = 5.0mA, I _B = 0	V _{(BR)CEO}	20	-	-	
Collector Cutoff Current	V _{CE} = 15V, I _B = 0	ICEO	-	-	20	μΑ
Collector Cutoff Current	V _{CE} = 15V, V _{BE} = -1.5V, T _C = 150°C	ICEX	-	-	5.0	mA
Collector Cutoff Current	V _{CE} = 35V, V _{BE} = -1.5V	I _{CEX}	-	-	5.0	mA
Emitter Cutoff Current	V _{CE} = 3.0V, I _C = 0	I _{EBO}	-	-	100	μΑ
DC Current Gain	I _c = 360mA, V _{ce} = 5.0V	b	5.0	-	-	-
	Ic = 50mA, V _{CE} = 15V	h _{FE}	40	-	120	
Current Gain – Bandwidth Product	Ic = 50mA, V _{CE} = 15V, f = 200MHz	Fτ	1200	-	-	MHz
Collector Base Capacitance	$V_{CB} = 15V, I_E = 0, f = 1MHz$	Ccb	-	1.8	3.5	pF
Noise Figure	V _{CE} = 15V, I _C = 10mA, f = 1.0MHz	NF	-	3.0	-	dB
Common Emitter Amplifier Voltage Gain	I_{C} = 50mA, V_{CC} = 15V, f = 50 to 216MHz	6				d D
		G _{VE}	11	-	-	dB
Power Input	$I_{c} = 50 \text{mA}, V_{cc} = 15 \text{V}, R_{s} = 50 \Omega,$	Pin	-	-	0.1	mW
	P _{out} = 1.26mW, f = 200MHz	Pin				

Note 1: Pulsed t_p = 300µs, duty cycle ≤ 2%.



NPN SILICON LOW POWER TRANSISTORS

High-reliability discrete products and engineering services since 1977

MECHANICAL CHARACTERSITICS

Case	ТО-39
Marking	Alpha-numeric
Polarity	See below

	то-39				
	Inches		Millimeters		
	Min	Max	Min	Мах	
Α	0.350	0.370	8.890	9.400	
В	0.315	0.335	8.000	8.510	
С	0.240	0.260	6.10	6.60	
D	0.016	0.021	0.406	0.533	
Е	0.009	0.125	0.2269	3.180	
F	0.016	0.019	0.406	0.533	
G	0.190	0.210	4.830	5.33	
Н	0.028	0.034	0.711	0.864	
J	0.029	0.040	0.737	1.020	
Κ	0.500	-	12.700	-	
L	0.250	-	6.350	-	
М	45° NOM		45° NOM		
Р	-	0.050	-	1.270	
Q	90°	NOM 90° NOM		MON	
R	0.100	-	2.540		

High-reliability discrete products and engineering services since 1977

NPN SILICON LOW POWER TRANSISTORS

FIGURE 1 – RF AMPLIFIER FOR VOLTAGE GAIN TEST CIRCUIT

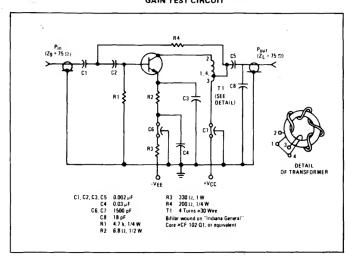
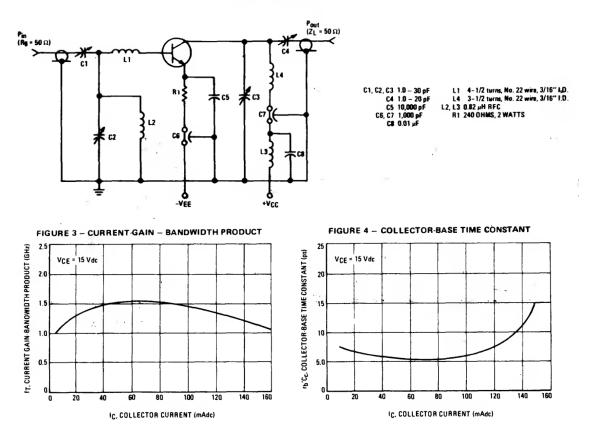
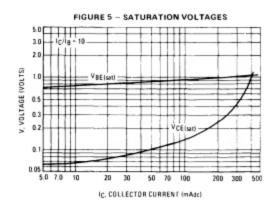
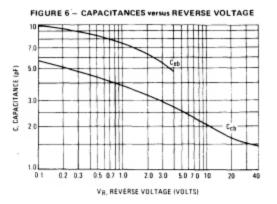
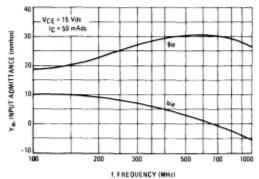



FIGURE 2 - 200 MHz TEST CIRCUIT




2N5109


NPN SILICON LOW POWER TRANSISTORS

High-reliability discrete products and engineering services since 1977

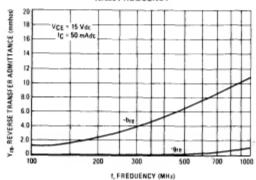
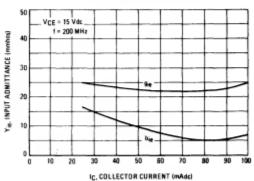
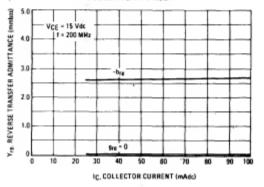
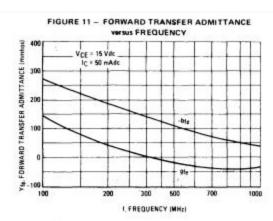
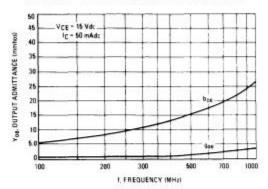


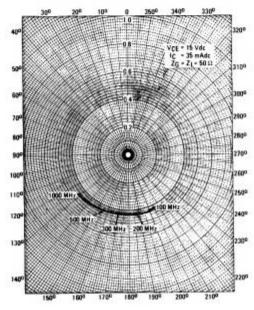
FIGURE 8 - INPUT ADMITTANCE versus COLLECTOR CURRENT

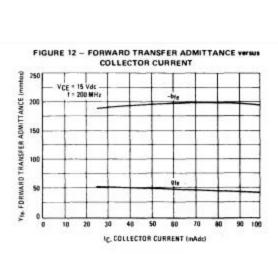




FIGURE 10 - REVERSE TRANSFER ADMITTANCE wersus COLLECTOR CURRENT



NPN SILICON LOW POWER TRANSISTORS


High-reliability discrete products and engineering services since 1977



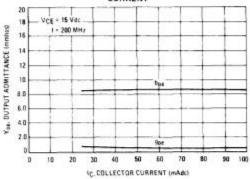
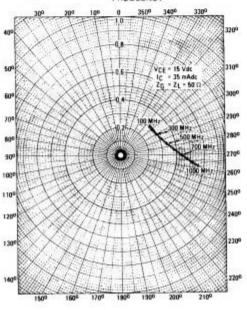
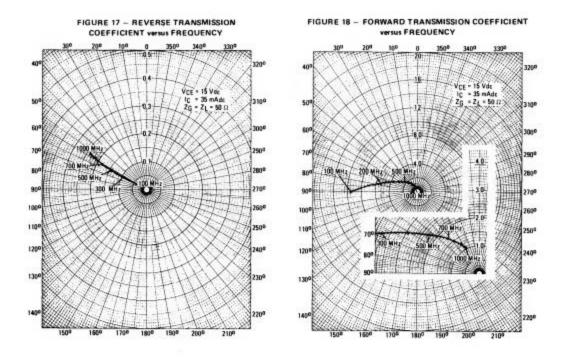
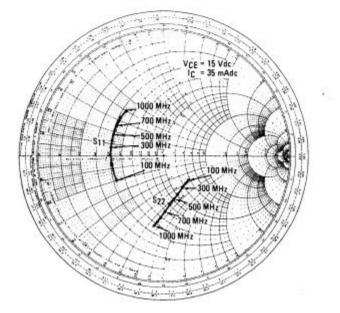
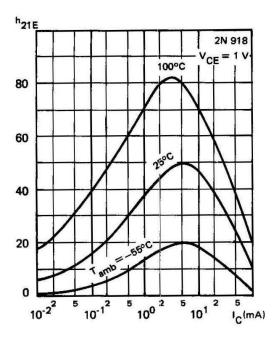



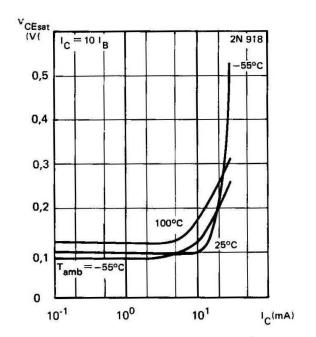
FIGURE 16 - OUTPUT REFLECTION COEFFICIENT versus FREQUENCY

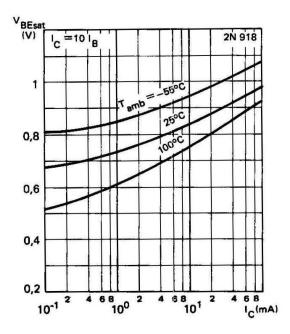
2N5109

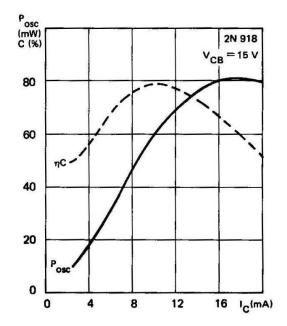
NPN SILICON LOW POWER TRANSISTORS

High-reliability discrete products and engineering services since 1977

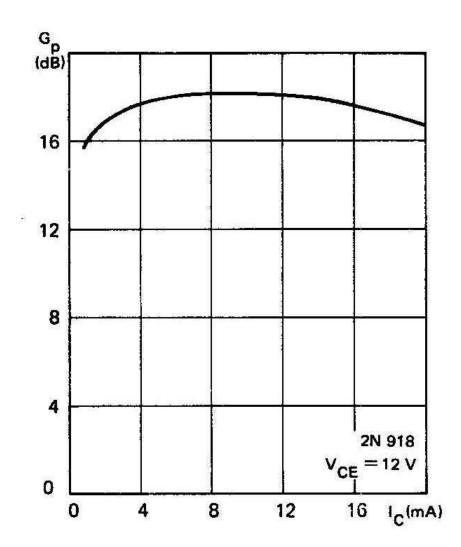





FIGURE 19 - INPUT REFLECTION COEFFICIENT AND OUTPUT REFLECTION COEFFICIENT versus FREQUENCY





2N5109



2N5109

