

High-reliability discrete products and engineering services since 1977

2N5428, 2N5429

NPN SILICON HIGH POWER TRANSISTORS

NFEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Ratings	Symbol	2N5428	2N5429	Unit
Collector-Emitter Voltage	V _{CEO}	80	100	Vdc
Collector-Base Voltage	V _{CBO}	80	100	Vdc
Emitter-Base Voltage	-5	6.0		Vdc
Collector Current	lc	7.0		Adc
Base Current	I _B	1.0		Adc
Total Power Dissipation T _C = 25°C	P _D	40		W
Junction Temperature	Tı	200		°C
Storage Junction Temperature Range	T _{stg}	-65 to +200		°C
Maximum Thermal Resistance Junction to Case	R _Ө ЈС	4.37 °C,		°C/W

ELECTRICAL CHARACTERSITICS (T_A = 25°C unless otherwise specified)

Characteristics		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS		•			
Collector-Emitter Sustaining Voltage	2N5428	V	80	-	Vdc
$I_C = 50$ mAdc, $I_B = 0$	2N5429	V _{CEO(sus)}	100	-	Vac
Collector-Emitter Saturation Voltage					
$I_C = 2Adc$, $I_B = 0.2 Adc$		V _{CE(sat)}	-	0.7	Vdc
$I_C = 7Adc$, $I_B = 0.7 Adc$			-	1.2	
Collector-Base Saturation Voltage					
$I_C = 2Adc$, $I_B = 0.2 Adc$		$V_{BE(sat)}$	-	1.2	Vdc
$I_C = 7Adc$, $I_B = 0.7 Adc$			-	2.0	
Collector Cutoff Current					m A da
V_{CB} = Rated V_{CBO} , I_E = 0		I _{CBO}	-	0.1	mAdc
Collector Cutoff Current					
$V_{CE} = 75Vdc$, $V_{BE(off)} = -1.5Vdc$	2N5428		-	0.1	
$V_{CE} = 90Vdc$, $V_{BE(off)} = -1.5Vdc$	2N5429	I _{CEO}	-	0.1	mAdc
$V_{CE} = 75Vdc$, $V_{BE(off)} = -1.5Vdc$, $T_C = 150$ °C	2N5428		-	1.0	
$V_{CE} = 90Vdc$, $V_{BE(off)} = -1.5Vdc$, $T_C = 150^{\circ}C$	2N5429		-	1.0	
Emitter Cutoff Current		les e			mAdc
$V_{EB} = 7Vdc$, $I_C = 0$		I _{EBO}	-	1.0	IIIAUC
DC Current Gain					
$I_C = 0.5$ Adc, $V_{CE} = 2.0$ Vdc		h _{FE}	60	-	
I_C = 2Adc, V_{CE} = 2.0 Vdc		TIFE	60	240	-
$I_C = 5Adc$, $V_{CE} = 2.0 \text{ Vdc}$			40	-	
Transition Frequency		f⊤			MHz
$I_C = 500$ mAdc, $V_{CE} = 10$ Vdc, $f = 1$ MHz		IT	20	-	141112

High-reliability discrete products and engineering services since 1977

2N5428, 2N5429

NPN SILICON HIGH POWER TRANSISTORS

High-reliability discrete products and engineering services since 1977

MECHANICAL CHARACTERISTICS

Case	TO-66
Marking	Alpha-numeric
Polarity	See below

2N5428, 2N5429

NPN SILICON HIGH POWER TRANSISTORS

	TO-66					
Dim	Inc	hes	Millimeters			
	Min	Max	Min	Max		
BL	1.205	1.280	30.60	32.50		
CD	0.445	0.557	11.303	14.148		
CH	0.257	0.284	6.540	7.220		
LL	0.374	0.413	9.500	10.50		
BW	0.680	0.727	17.26	18.46		
LD	0.030	0.036	0.760	0.920		
HT	0.054	0.065	1.380	1.650		
MHS	0.951	0.976	24.16	24.78		
S1	0.545	0.614	13.84	15.60		
HD	0.131	0.154	3.320	3.920		
PS	0.191	0.210	4.860	5.340		