

MJ10015-MJ10016

High-reliability discrete products and engineering services since 1977

NPN SILICON POWER DARLINGTON TRANSISTORS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

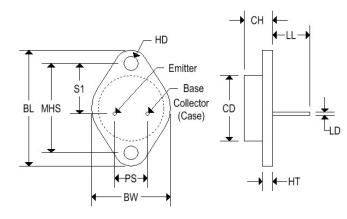
MAXIMUM RATINGS

Characteristics	Symbol	MJ10015	MJ10016	Unit
Collector-emitter voltage	V _{CEV}	600	700	V
Collector-emitter voltage	V _{CEO(sus)}	400	500	V
Emitter-base voltage	V _{EBO}	8.0		V
Collector-current				
-continuous	Ic	50		А
-peak		75		
Base current	I _B	10		А
Total power dissipation				
@ T _c = 25°C	D	25	50	W
@ T _c = 100°C	P _D	143		W
Derate above 25°C		1.43		W/°C
Operating and storage junction temperature range	T _J , T _{stg}	-65 to +200		°C
Thermal resistance, junction to case	R _{eJC}	0.7		°C/W

ELECTRICAL CHARACTERSITICS (T_A = 25°C unless otherwise specified)

Characteristics		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-emitter sustaining voltage (I _C = 100mA, I _B = 0, V _{clamp} = Rate V _{CEO})	MJ10015 MJ10015	V _{CEO(sus)}	400 500		v
Collector-cutoff current (V _{CEV} = Rated Value, V _{BE(off)} = 1.5V)		I _{CEV}		0.25	mA
Emitter-cutoff current $(V_{EB} = 2.0V, I_C = 0)$		I _{EBO}		350	mA
ON CHARACTERISTICS				1	J
DC current gain (I _c = 20A, V _{CE} = 5.0V) (I _c = 40A, V _{CE} = 5.0V)		h _{FE}	25 10		
Collector-emitter saturation voltage $(I_C=20A,\ I_B=1.0A) \\ (I_C=50A,\ I_B=10A)$		V _{CE(sat)}		2.2 5.0	V
Base-emitter saturation voltage $(I_C = 20A, I_B = 1.0A)$		$V_{BE(sat)}$		2.75	V
Diode forward voltage (I _F = 20A)		V _F		5.0	V
DYNAMIC CHARACTERISTICS					
Output capacitance ($V_{CE} = 10V$, $I_E = 0$, f = 100kHz)		C _{ob}		750	pF

MJ10015-MJ10016

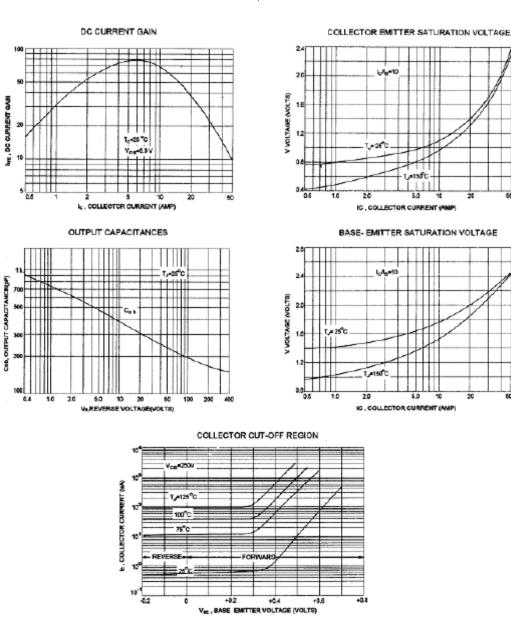

High-reliability discrete products and engineering services since 1977

NPN SILICON POWER DARLINGTON TRANSISTORS

Characteristics		Symbol	Min	Max	Unit	
SWITCHING CHARACTERISTICS						
Delay time	$V_{CC} = 250V, I_C = 20A, I_{B1} = 1.0A, V_{BE(off)}$ = 5.0V, $t_p = 25\mu s$, duty cycle $\leq 2\%$	t _d		0.3		
Rise time		t _r		1.0		
Storage time		ts		2.5	μs	
Fall time		t _f		1.0		

MECHANICAL CHARACTERISTICS

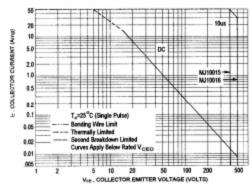
Case	TO-3	
Marking	Alpha-numeric	
Pin out	See below	


	TO-3				
	Inc	hes	Millimeters		
	Min	Max	Min	Max	
CD	-	0.875	-	22.220	
СН	0.250	0.380	6.860	9.650	
HT	0.060	0.135	1.520	3.430	
BW	-	1.050	-	26.670	
HD	0.131	0.188	3.330	4.780	
LD	0.038	0.043	0.970	1.090	
LL	0.312	0.500	7.920	12.700	
BL	1.550 REF		39.370 REF		
MHS	1.177	1.197	29.900	30.400	
PS	0.420	0.440	10.670	11.180	
S1	0.655	0.675	16.640	17.150	

High-reliability discrete products and engineering services since 1977

MJ10015-MJ10016

NPN SILICON POWER DARLINGTON TRANSISTORS

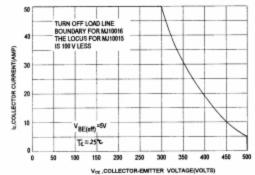


High-reliability discrete products and engineering services since 1977

MJ10015-MJ10016

NPN SILICON POWER DARLINGTON TRANSISTORS

FIG-7 FORWARD BIAS SAFE OPERATING AREA



FORWARD BIAS

There are two limitation on the power handling ability of a transistor:average junction temperature and second breakdown safe operating area curves indicate $-I_{\rm C} - V_{\rm CR}$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate.

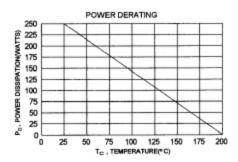

The data of FIG-7 is base on T_c=25 °C;T_dev₂ isvariable depending on power level, second breakdown pulse limits are valid for duty cycles to 10% must be denate when T_c ≥25°C, Second breakdown limitations do not denate the same as thermal limitations.

FIG-8 REVERSE BIAS SAFE OPERATING AREA

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base-to-emitter junction reverse biased Under these conditions the collector rowtage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several mean such as active clamping, RC snubbing, load line shaping, etc. the safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. FIG-8 gives the RBSOA haracteristics.

