

High-reliability discrete products and engineering services since 1977

MJ11028, MJ11030, MJ11032 – NPN MJ11029, MJ11031, MJ11033 – PNP

COMPLEMENTARY SILICON DARLINGTON POWER TRANSISTORS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Ratings	Symbol	MJ11028 MJ11029	MJ11030 MJ11031	MJ11032 MJ11033	Unit
Collector-emitter voltage	V _{CEO}	60	90	120	V
Collector-base voltage	V _{CBO}	60	90	120	V
Emitter-base voltage	V _{EBO}	5			V
Continuous collector current	Ic	50		А	
Peak collector current	I _{CM}	100			
Continuous base current	I _B	2		Α	
Total device dissipation @ T _c = 25°C	PD		300		W
Derate above 25°C @ T _c = 100°C	PD	1.71			W/°C
Operating and storage temperature range	T_J , T_stg	-55 to +200		°C	
Maximum lead temperature for soldering purposes ≤ 10s	Τ _L	275		°C	
Thermal resistance, junction to case	R _{OJC}	0.584		°C	

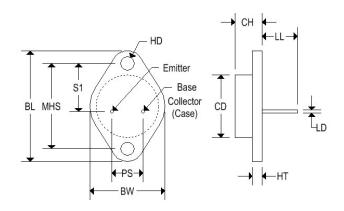
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise specified)					
Characteristics		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector- emitter breakdown voltage (1)					
I _C = 100mA, I _B = 0	MJ10028, MJ10029	\ <u>'</u>	60	-	V
	MJ11030, MJ11031	V _{(BR)CEO}	90	-	V
	MJ11032, MJ11033		120	-	
Collector emitter leakage current					
$V_{CE} = 60V$, $R_{BE} = 1k\Omega$	MJ11028, MJ11029		-	2	
$V_{CE} = 90V$, $R_{BE} = 1k\Omega$	MJ11030, MJ11031		-	2	
V_{CE} = 120V, R_{BE} = 1k Ω	MJ11032, MJ11033	I _{CER}	-	2	mA
$V_{CE} = 60V$, $R_{BE} = 1k\Omega$, $T_{C} = 150^{-}C$	MJ11028, MJ11029		-	10	
$V_{CE} = 90V$, $R_{BE} = 1k\Omega$, $T_{C} = 150^{-}C$	MJ11030, MJ11031		-	10	
$V_{CE} = 120V$, $R_{BE} = 1k\Omega$, $T_{C} = 150^{\circ}C$	MJ11032, MJ11033		-	10	
Emitter cutoff current				5	^
$V_{BE} = 5V, I_{C} = 0$		I _{EBO}	-	5	mA
Collector emitter leakage current					
$V_{CE} = 50V, I_B = 0$		I _{CEO}	-	2	mA
ON CHARACTERISTICS (1)					
DC current gain					
$I_{C} = 25A, V_{CE} = 5V$		hFE	1000	18000	-
$I_C = 50A$, $V_{CE} = 5V$			400	-	

High-reliability discrete products and engineering services since 1977

MJ11028, MJ11030, MJ11032 – NPN MJ11029, MJ11031, MJ11033 – PNP

COMPLEMENTARY SILICON DARLINGTON POWER TRANSISTORS


ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

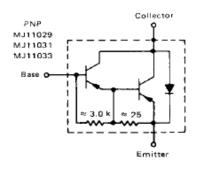
Characteristics	Symbol	Min	Max	Unit
Collector emitter saturation voltage				
I _C = 25A, I _B = 250mA	$V_{CE(sat)}$	-	2.5	V
I _C = 50A, I _B = 300mA		-	4.5	
Base emitter saturation voltage				
I _C = 25A, I _B = 200mA	$V_{BE(sat)}$	-	3.0	V
I _C = 50A, I _B = 500mA		-	3.5	

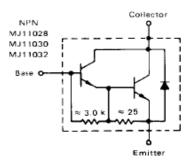
Note 1: Pulse test: Pulse width $\leq 300\mu s$, duty cycle $\leq 2.0\%$.

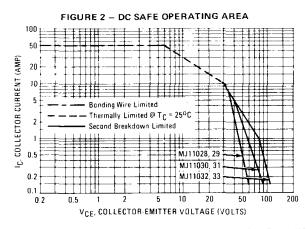
MECHANICAL CHARACTERISTICS

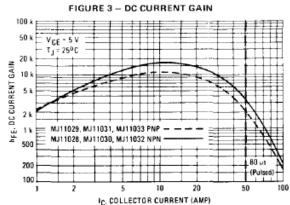
Case	TO-3	
Marking	Alpha-numeric	
Polarity	See below	

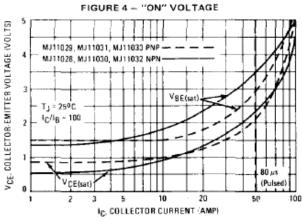
	TO-3			
	Inches		Millim	neters
	Min	Max	Min	Max
CD	-	0.875	-	22.220
CH	0.250	0.380	6.860	9.650
HT	0.060	0.135	1.520	3.430
BW	-	1.050	-	26.670
HD	0.131	0.188	3.330	4.780
LD	0.038	0.043	0.970	1.090
LL	0.312	0.500	7.920	12.700
BL	1.550	REF	39.370 REF	
MHS	1.177	1.197	29.900	30.400
PS	0.420	0.440	10.670	11.180
S 1	0.655	0.675	16.640	17.150




High-reliability discrete products and engineering services since 1977


MJ11028, MJ11030, MJ11032 – NPN MJ11029, MJ11031, MJ11033 – PNP


COMPLEMENTARY SILICON DARLINGTON POWER TRANSISTORS


FIGURE 1 - DARLINGTON CIRCUIT SCHEMATIC

There are two limitations on the power-handling ability of a transistor: average junction temperature and second breakdown. Safe operating are curves indicate I_{C^-} V_{CE} limits of the transistor that must be observed for reliable operation, ie., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Fig. 2 is based on $T_{J(pk)} = 200^{\circ}\text{C}$: T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.