High-reliability discrete products and engineering services since 1977

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Ratings	Symbol	2N3902	2N5157	Units
Collector-Emitter Voltage	$\mathrm{V}_{\text {ceo }}$	400	500	Vdc
Emitter-Base Voltage	$V_{\text {EbO }}$	5.0	6.0	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {cbo }}$	700		Vdc
Collector Current	Ic	3.5		Adc
Base Current	I_{B}	2.0		Adc
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}^{(1)}$ @ $\mathrm{T}_{\mathrm{A}}=10 \mathbf{0}^{\circ} \mathrm{C}^{(2)}$	$\mathrm{P}_{\text {T }}$	$\begin{aligned} & \hline 5.0 \\ & 100 \end{aligned}$		$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
Operating \& Storage Junction Temperature Range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-65 to +200		${ }^{\circ} \mathrm{C}$
THERMAL CHARACTERISTICS				
Characteristics	Symbol	Max.		Unit
Thermal Resistance, Junction to Case	Rөлс	1.17		${ }^{\circ} \mathrm{C} / \mathrm{W}$

1. Derate linearly $29 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$
2. Derate linearly $0.8 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ for $\mathrm{T}_{\mathrm{C}}>75^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Characteristics		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Cutoff Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=325 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=400 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & \text { 2N3902 } \\ & \text { 2N5157 } \end{aligned}$	$I_{\text {(CEO) }}$		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\mu \mathrm{Adc}$
Collector-Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=700 \mathrm{~V}\right)$		Icex		500	$\mu \mathrm{Adc}$
Emitter-Base Cutoff Current $\begin{aligned} & \left(V_{E B}=5.0\right) \\ & \left(V_{E B}=6.0\right) \end{aligned}$	2N3902 2N5157	Iebo		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\mu \mathrm{Adc}$
ON-CHARACTERISTICS ${ }^{(3)}$					
Base-Emitter Saturation Voltage $\begin{aligned} & \left(I_{C}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~A}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=3.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.7 \mathrm{~A}\right) \end{aligned}$		$\mathrm{V}_{\text {BE (sat) }}$		$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	Vdc
Collector-Emitter Saturation Voltage $\begin{aligned} & \left(I_{C}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~A}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=3.5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0.7 \mathrm{~A}\right) \end{aligned}$		$\mathrm{V}_{\text {CE(sat) }}$		$\begin{aligned} & 0.8 \\ & 2.5 \end{aligned}$	Vdc
Forward Current Transfer Ratio $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right) \\ & \left(\mathrm{I}=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=3.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right) \end{aligned}$		$h_{\text {fe }}$	$\begin{gathered} 25 \\ 30 \\ 10 \\ 5 \end{gathered}$	90	-
Collector-Emitter Sustaining Voltage $\left(\mathrm{I}_{\mathrm{c}}=100 \mathrm{~mA}\right)$	$\begin{aligned} & \text { 2N3902 } \\ & \text { 2N5157 } \end{aligned}$	$\mathrm{V}_{\text {ceo(sus) }}$	$\begin{aligned} & 325 \\ & 400 \end{aligned}$		Vdc

High-reliability discrete products and engineering services since 1977

NPN HIGH POWER SILICON TRANSISTORS

Characteristics	Symbol	Min.	Max.	Unit
DYNAMIC CHARACTERISTICS				
Small Signal Short Circuit Forward Current Transfer Ratio $\left(\mathrm{I}=0.2 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right.$)	${ }_{1} \mathrm{~h}_{\text {fel }}$	2.5	25	-
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0,100 \mathrm{kHz} \leq \mathrm{f} \leq 1 \mathrm{MHz}\right)$	Cobo	-	250	pF
SWITCHING CHARACTERISTICS				
Turn-On Time $\left(\mathrm{V}_{\mathrm{CC}}=125 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=0.1 \mathrm{~A}\right)$	$\mathrm{t}_{\text {on }}$	-	0.8	$\mu \mathrm{s}$
Turn-Off Time $\left(\mathrm{V}_{\mathrm{cc}}=125 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 1}=0.1 \mathrm{~A},-\mathrm{I}_{\mathrm{B} 2}=0.5 \mathrm{~A}\right)$	$\mathrm{t}_{\text {off }}$	-	1.7	$\mu \mathrm{s}$
SAFE OPERATING AREA				
DC Tests (continuous) $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t} \geq 1.0 \mathrm{~s}$ Test 1 $\mathrm{V}_{\mathrm{CE}}=28.6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3.5 \mathrm{~A}$ Test 2 $\mathrm{V}_{\mathrm{CE}}=70 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.43 \mathrm{~A}$ Test 3 $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=325 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=55 \mathrm{~A}(2 \mathrm{~N} 3902) \\ & \mathrm{V}_{\mathrm{CE}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=35 \mathrm{~A}(2 \mathrm{~N} 5157) \end{aligned}$ Switching Tests Load Condition C (unclamped inductive load) $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, duty cycle $\leq 10 \%, \mathrm{R}_{\mathrm{S}}=0.1 \Omega$ Test 1 $\mathrm{t}_{\mathrm{p}}=$ approximately $3 \mathrm{~ms}\left(\right.$ vary to obtain $\left.\mathrm{I}_{\mathrm{C}}\right), \mathrm{R}_{\mathrm{BB} 1}=20 \Omega, \mathrm{~V}_{\mathrm{BB} 1}=$ Test 2 $\mathrm{t}_{\mathrm{p}}=$ approximately 3 ms (vary to obtain I_{c}), $\mathrm{R}_{\mathrm{BB} 1}=100 \Omega, \mathrm{~V}_{\mathrm{B}}$ Switching Tests Load Condition C (clamped inductive load) $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, duty cycle $\leq 10 \%$ Test 1 $\mathrm{t}_{\mathrm{p}}=$ approximately $30 \mathrm{~ms}\left(\right.$ vary to obtain I_{C}), $\mathrm{R}_{\mathrm{S}}=0.1 \Omega, \mathrm{R}_{\mathrm{BB} 1}=$ $R L \leq 0 \Omega$ (A suitable clamping circuit or diode can be used) Clamp voltage $=400+0,-5 \mathrm{~V}(2 \mathrm{~N} 3902)$ Clamp voltage $=500+0,-5 \mathrm{~V}(2 N 5157)$ Clamped voltage must be reached	$\mathrm{k} \Omega, \mathrm{V}_{\mathrm{BB} 2}=$ $=3 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{BB}}$ $\mathrm{OV}, \mathrm{R}_{\mathrm{BB} 2}=$	$V_{c c}=5$ $\mathrm{V}, \mathrm{V}_{\mathrm{cc}}$ $\mathrm{V}_{\mathrm{BB} 2}=$, L = .6A, L 50V, I	$\leq 14 \Omega$ $\Omega, \mathrm{R}_{\mathrm{L}} \leq$ $\mathrm{H}, \mathrm{R}=$

3. Pulse Test : Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

Semiconductors
High-reliability discrete products and engineering services since 1977

2N3902, 2N5157

NPN HIGH POWER SILICON TRANSISTORS

MECHANICAL CHARACTERISTICS

Case:	TO-3
Marking:	Alpha-Numeric
Polarity:	See below

	TO-3			
	Inches		Millimeters	
	Min	Max	Min	Max
CD	-	0.875	-	22.220
CH	0.250	0.380	6.860	9.650
HT	0.060	0.135	1.520	3.430
BW	-	1.050	-	26.670
HD	0.131	0.188	3.330	4.780
LD	0.038	0.043	0.970	1.090
LL	0.312	0.500	7.920	12.700
BL	1.550 REF	39.370		REF
MHS	1.177	1.197	29.900	30.400
PS	0.420	0.440	10.670	11.180
S1	0.655	0.675	16.640	17.150

