

MU4891-MU4894

High-reliability discrete products and engineering services since 1977

SILICON UNIJUNCTION TRANSISTOR

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS.

Rating	Symbol	Value	Unit
Power dissipation ⁽¹⁾	P _D	300	mW
RMS emitter current	Ι _Ε	50	mA
Peak pulse emitter current ⁽²⁾	i _E	1.0	Amps
Emitter reverse voltage	V _{B2E}	30	Volts
Storage temperature range	T _{stg}	-65 to 150	°C

Note 1: Derate 3mW/°C increase in ambient temperature. The total power dissipation must be limited by the external circuitry.

 $V_{B2B1} = V(R_{BB} \cdot P_D)$

Note 2: Capacitance discharge must fall to 0.37 Amp within 3.0ms and PRR \leq 10PPS.

ELECTRICAL CHARACTERISTICS (T_c = 25°C unless otherwise noted)

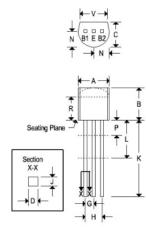
Parameter		Symbol	Min	Тур	Max	Unit
Intrinsic standoff ratio						
$(V_{B2B1} = 10V)^{(1)}$	MU4892		0.51	-	0.69	-
	MU4891, MU4893	η	0.55	-	0.82	
	MU4894		0.74	-	0.86	
Interbase resistance						
$(V_{B2B1} = 3V, I_E = 0)$	MU4891, MU4892	R _{BB}	4.0	7.0	9.1	kΩ
	MU4893, MU4894		4.0	7.0	12.0	
Interbase resistance temperature of	coefficient					
$(V_{B2B1} = 3V, I_E = 0, T_A = -65^{\circ} \text{ to } 100^{\circ}\text{C})$	αR_{BB}	0.1	-	0.9	%/°C	
Emitter saturation voltage						Valta
$(V_{B2B1} = 10V, I_E = 50mA)^{(2)}$	V _{EB1(sat)}	-	2.5	4.0	Volts	
Modulated interbase current		I _{B2(mod)}				mA
(V _{B2B1} = 10V, I _E = 50mA)	10		15	-		
Emitter reverse current		1	_	5.0	10	nA
$(V_{B2E} = 30V, I_{B1} = 0)$		I _{EB2O}	-	5.0	10	IIA
Peak point emitter current						
(V _{B2B1} = 25V)	MU4891	1	-	0.6	5.0	μΑ
	MU4892, MU4893	I _P	-	0.6	2.0	
	MU4894		-	0.6	1.0	
Valley point current						
$(V_{B2B1} = 20V, R_{B2} = 100$ ohms) ⁽²⁾	MU4891, MU4893, MU4894	Iv	2.0	4.0	-	mA
	MU4892		2.0	3.0	-	
Base-one peak pulse voltage ⁽³⁾						
Figure 3	MU4891, MU4892, MU4894	V _{OB1}	3.0	5.0	-	Volts
	MU4893		6.0	8.0	-	

Note 1: Intrinsic standoff ratio: $\eta = (V_P - V_{EB1})/V_{B2B3}$, where V_P = peak point emitter voltage , V_{B2B1} = interbase voltage, V_{EB1} = emitter to base one junction diode drop

(≈ 0.5V @ 10µA).

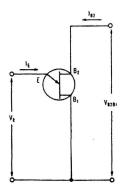
Note 2: PW ≈ 300µs, duty cycle ≤ 2% to avoid internal heating due to interbase modulation which may result in erroneous readings

Note 3: Base one peak pulse voltage is used to ensure minimum pulse amplitude for applications in SCR firing circuits and other types of pulse circuits.


MU4891-MU4894

SILICON UNIJUNCTION TRANSISTOR

High-reliability discrete products and engineering services since 1977


MECHANICAL CHARACTERISTICS

Case	TO-92		
Marking	Alpha-numeric		
Pin out:	See below		

	TO-92				
Dim	Inches		Millin	neters	
	Min	Max	Min	Max	
Α	0.175	0.205	4.450	5.200	
В	0.170	0.210	4.320	5.330	
С	0.125	0.165	3.180	4.190	
D	0.016	0.021	0.407	0.533	
G	0.045	0.055	1.150	1.390	
н	0.095	0.105	2.420	2.660	
J	0.015	0.020	0.390	0.500	
к	0.500		12.700	-	
L	0.250		6.350		
N	0.080	0.105	2.040	2.660	
Ρ	-	0.100		2.540	
R	0.115		2.930	-	
V	0.135	-	3.430	-	

FIGURE 1 - UNIJUNCTION TRANSISTOR Symbol and nomenclature

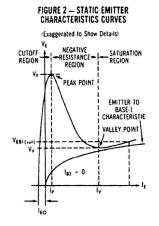
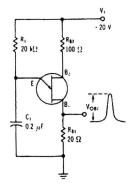



FIGURE 3 — YOBI TEST CIRCUIT (Typical Relaxation Osciliator)

Rev. 20121009