

High-reliability discrete products and engineering services since 1977

GA300(A)-GA301(A)

SILICON CONTROLLED RECTIFIERS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

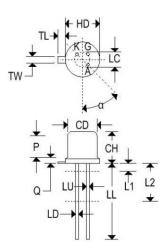
MAXIMUM RATINGS

		GA300 GA300A	GA301 GA301A		
Repetitive Peak Off State Voltage	V _{DRM}	60V	100V		
Repetitive Peak On-State Current	I _{TRM}	Up to 100A			
Peak Gate Current	I _{GM}	250 mA			
Average Gate Current	I _{G(AV)}	25 mA			
Reverse Gate Current	I _{GR}		3 mA		
Reverse Gate Voltage	V _{GR}	5 V			
Storage Temperature Range		-65 to +150℃			
Operating Temperature Range		0 to) +125°C		

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Test	Symbol	Min	Typical	Max	Units	Conditions
Delay Time	t _d	-	20 10	30 -	ns	$I_G = 20 \text{ mA}, I_T = 1 \text{ A}$ $I_G = 30 \text{ mA}, I_T = 1 \text{ A}$
Rise Time (Note 1) GA300, GA300A	t _r	-	15 25	25 -	ns	$V_D = 60 \text{ V, } I_T = 1 \text{ A}$ $V_D = 60 \text{ V, } I_T = 30 \text{ A}^{\text{(Note 1)}}$
Rise Time (Note 1) GA301, GA301A	t _r	-	10 20	20	ns	$V_D = 100 \text{ V, I}_T = 1\text{A}$ $V_D = 100 \text{ V, I}_T = 30 \text{ A}^{\text{(Note 1)}}$
Circuit Commutated Turn Off Time GA300, GA301	tq	-	0.8	2.0	μs	I _T = 1 A, I _R = 1 A, R _{GK} = 1K
GA300A, GA301A			0.3	0.5		
Gate Trigger On Pulse Width	t _{pg(on)}	-	0.02	0.05	μs	$I_G = 10 \text{ mA}, I_T = 1 \text{ A}$
Off-State Current	I _{DRM}	-	0.01 20	0.1 100	μА	V_{DRM} = Rating, R_{GK} = 1K, T = 25°C V_{DRM} = Rating, R_{GK} = 1K, T = 125°C
Reverse Current (Note 2)	I _{RRM}	-	1.0	10	mA	V _{RRM} = 30 V, R _{GK} = 1 K ^(Note 2)
Gate Trigger Voltage	V _{GT}	0.4 0.10	0.6 0.2	0.75	V	$V_D = 5V$, $R_{GS} = 100 \Omega$, $T = 25$ °C $V_D = 5 V$, $R_{GS} = 100 \Omega$, $T = 125$ °C
Gate Trigger Current	I _{GT}	-	10	200	μΑ	$V_D = 5 \text{ V}, R_{GS} = 10 \text{ K}$
On-State Voltage	V _T	-	1.1	1.5	V	I _T = 2 A
Off-State Voltage – Critical Rate of Rise	dV/dt	15	30	-	V/µs	V _D = 30 V, R _{GK} = 1 K
Reverse Gate Current	I _{GR}	-	0.01	0.1	mA	V _{GR} = 5 V
Holding Current	I _H	0.3 0.05	2.0 0.4	5.0	mA	$V_D = 5V$, $R_{GK} = 1$ K, $T = 25$ °C $V_D = 5$ V, $R_{GK} = 1$ K, $T = 125$ °C

Note 1 – I_G = 10 mA, Pulse Test: Duty Cycle < 1%.


Note 2 – Pulse test intended to guarantee reverse anode voltage capability for pulse commutation. Device should not be operated in the reverse blocking mode on a continuous basis.

High-reliability discrete products and engineering services since 1977

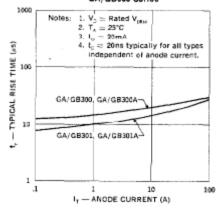
MECHANICAL CHARACTERISTICS

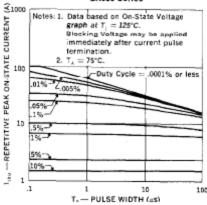
Case	TO-18
Marking	Alpha-numeric
Pin out	See below

	TO-18							
	Inc	hes	Millimeters					
	Min	Max	Min	Max				
Α	0.209	0.230	5.310	5.840				
В	0.178	0.195	4.520	4.950				
С	0.170	0.210	4.320	5.330				
D	0.016	0.021	0.406	0.533				
E		0.030	- 3	0.762				
F	0.016	0.019	0.406	0.483				
G	0.100 BSC		2.540 BSC					
Н	0.036	0.046	0.914	1.170				
J	0.028	0.048	0.711	1.220				
K	0.500	14	12.700	112				
L	0.250		6.350					
М	45°C BSC		45° BSC					
N	0.050 BSC		1.270 BSC					
Р	15	0.050	150	1.270				

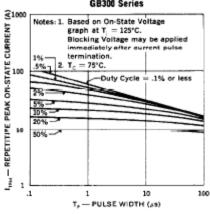
GA300(A)-GA301(A)

SILICON CONTROLLED RECTIFIERS

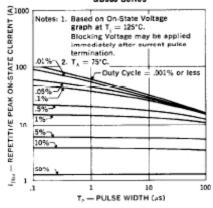


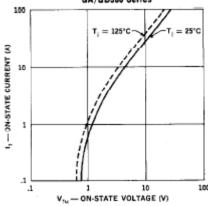

High-reliability discrete products and engineering services since 1977

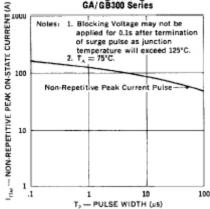
GA300(A)-GA301(A)


SILICON CONTROLLED RECTIFIERS

Switching Speed vs. Current GA/GB300 Series




Peak Current vs. Pulse Width GB300 Series


Peak Current vs. Pulse Width GB300 Series

On-State Voltage vs. Current GA/GB300 Series

Surge Rating GA/GB300 Series

