

MFE211-MFE212

High-reliability discrete products and engineering services since 1977

### **DUAL GATE MOSFETS**

#### **FEATURES**

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

#### **MAXIMUM RATINGS.**

| Rating                                                     | Symbol           | Value       | Unit  |  |
|------------------------------------------------------------|------------------|-------------|-------|--|
| Drain Source Voltage                                       | V <sub>DSX</sub> | 20          | Vdc   |  |
| Drain Gate Voltage                                         | $V_{DG1}$        | 35          | Vdc   |  |
| Drain Gate voltage                                         | $V_{DG2}$        | 35          | Vuc   |  |
| Gate Current                                               | I <sub>G1</sub>  | ±10         | mAdc  |  |
| date current                                               | I <sub>G2</sub>  | ±10         |       |  |
| Drain Current – Continuous                                 | I <sub>D</sub>   | 50          | mAdc  |  |
| Total Power Dissipation @ T <sub>A</sub> = 25°C            | D                | 360         | mW    |  |
| Derate above 25°C                                          | $P_D$            | 2.4         | mW/°C |  |
| Total Power Dissipation @ T <sub>c</sub> = 25°C            | D                | 1.2         | Watt  |  |
| Derate above 25°C                                          | $P_{D}$          | 8.0         | mW/°C |  |
| Storage Channel Temperature Range                          | $T_{stg}$        | -65 to +200 | °C    |  |
| Junction Temperature Range                                 | T <sub>J</sub>   | -65 to +175 | °C    |  |
| Lead Temperature, 1/16" from Seated Surface for 10 Seconds | Τ <sub>L</sub>   | 300         | °C    |  |

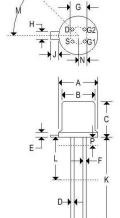
### **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristics                                                                                    |        | Symbol                | Min   | Max  | Unit  |
|----------------------------------------------------------------------------------------------------|--------|-----------------------|-------|------|-------|
| OFF CHARACTERISTICS                                                                                |        |                       |       |      |       |
| Drain Source Breakdown Voltage                                                                     |        | $V_{(BR)DSX}$         | 20    | -    | Vdc   |
| $(I_D = 10 \mu Adc, V_{G1S} = V_{G2S} = -4.0 Vdc)$                                                 |        |                       | 20    |      |       |
| Gate 1 – Source Breakdown Voltage (1)                                                              |        | V <sub>(BR)G1SO</sub> |       | -    | Vdc   |
| $(I_{G1} = \pm 10 \text{ mAdc}, V_{G2S} = V_{DS} = 0)$                                             |        |                       | ±6.0  |      |       |
| Gate 2 – Source Breakdown Voltage (1)                                                              |        |                       | 16.0  |      |       |
| $(I_{G2} = \pm 10 \text{ mAdc}, V_{G1S} = V_{DS} = 0)$                                             |        | V <sub>(BR)G2SO</sub> | ±6.0  | -    | Vdc   |
| Gate 1 to Source Cutoff Voltage                                                                    | MFE211 | V                     | -0.5  | -5.5 | \/de  |
| ( $V_{DS}$ = 15 Vdc, $V_{G2S}$ = 4.0 Vdc, $I_D$ = 20 $\mu$ Adc)                                    | MFE212 | $V_{G1S(off)}$        | -0.5  | -4.0 | Vdc   |
| Gate 2 to Source Cutoff Voltage                                                                    | MFE211 | .,                    | -0.2  | -2.5 |       |
| $(V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, I_D = 20 \mu\text{Adc})$                                   | MFE212 | V <sub>G2S(off)</sub> | -0.2  | -4.0 | Vdc   |
| Gate 1 Leakage Current                                                                             |        |                       |       |      |       |
| $(V_{G1S} = \pm 5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0)$                                            |        | I <sub>G1SS</sub>     | -     | ±10  | mAdc  |
| $(V_{G1S} = -5.0 \text{ Vdc}, V_{G2S} = V_{DS} = 0, T_A = 150^{\circ}\text{C})$                    |        |                       | -     | -10  | μAdc  |
| Gate 2 Leakage Current                                                                             |        |                       |       |      |       |
| $(V_{G2S} = \pm 5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0)$                                            |        | I <sub>G2SS</sub>     | -     | ±10  | nAdc  |
| $(V_{G2S} = -5.0 \text{ Vdc}, V_{G1S} = V_{DS} = 0, T_A = 150^{\circ}\text{C})$                    |        |                       | -     | -10  | μAdc  |
| ON CHARACTERISTICS                                                                                 |        |                       |       |      |       |
| Zero-Gate Voltage Drain Current (2)                                                                |        | I <sub>DSS</sub>      | 6.0   | 40   | mAdc  |
| $(V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, V_{G2S} = 4.0 \text{ Vdc})$                                |        |                       |       |      |       |
| SMALL SIGNAL CHARACTERISTICS                                                                       |        |                       |       |      |       |
| Forward Transfer Admittance (3)                                                                    |        | Y <sub>fs</sub>       | 17    | 40   |       |
| $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, V_{G1S} = 0, f = 1.0 \text{ kHz})$           |        |                       |       |      | mmhos |
| Reverse Transfer Capacitance                                                                       |        | C <sub>rss</sub>      | 0.005 | 0.05 |       |
| $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 10 \text{ mAdc}, f = 1.0 \text{ MHz})$ |        |                       |       |      | pF    |

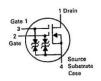


### **High-reliability discrete products** and engineering services since 1977

# MFE211-MFE212


### **DUAL GATE MOSFETS**

| FUNCTIONAL CHARACTERISTICS                                                       |        |                               |     |      |       |
|----------------------------------------------------------------------------------|--------|-------------------------------|-----|------|-------|
| Noise Figure                                                                     |        |                               |     |      |       |
| $(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz})$       | MFE211 | NF                            | -   | 3.5  | dB    |
| $(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$        | MFE212 |                               | -   | 4.0  |       |
| Common Source Power Gain                                                         |        |                               |     |      |       |
| $(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz})$       | MFE211 | $G_{ps}$                      | 24  | 35   | dB    |
| $(V_{DD} = 18 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$        | MFE211 | G <sub>c</sub> <sup>(5)</sup> | 29  | 37   | ив    |
| $(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RF} = 200 \text{ MHz})$  | MFE212 | G <sub>c</sub> ,              | 21  | 28   |       |
| Bandwidth                                                                        |        |                               |     |      |       |
| $(V_{DD} = 18 \text{ Vdc}, V_{GG} = 7.0 \text{ Vdc}, f = 200 \text{ MHz})$       | MFE211 | BW                            | 5.0 | 12   | NALL- |
| $(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RF} = 200 \text{ MHz})$  | MFE212 |                               | 4.0 | 7.0  | MHz   |
| $(V_{DD} = 18 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$        | MFE211 |                               | 3.5 | 6.0  |       |
| Gain Control Gate Supply Voltage (4)                                             |        |                               |     |      |       |
| $(V_{DD} = 18 \text{ Vdc}, \Delta G_{ps} = -30 \text{ dB}, f = 200 \text{ MHz})$ | MFE211 | $V_{GG(GC)}$                  | -   | -2.0 | Vdc   |
| ( $V_{DD}$ = 18 Vdc, $\Delta G_{ps}$ = -30 dB, f = 45 MHz)                       | MFE211 |                               | -   | ±1.0 |       |

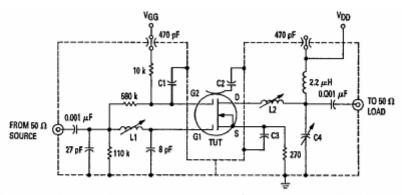

- All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate voltage limiting network is functioning properly.
- Pulse test: Pulse width =  $300\mu$ s, duty cycle  $\leq 2\%$ .
- This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The signal is applied to gate 1 with gate 2 at ac ground.
- $\Delta$  G<sub>ps</sub> is defined as the change in G<sub>ps</sub> from the value at  $V_{GG} = 7.0$  volts (MFE211). Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum G<sub>C</sub>.

#### **MECHANICAL CHARACTERISTICS**

| Case:    | TO-72         |
|----------|---------------|
| Marking: | Alpha-numeric |
| Pin out: | See below     |

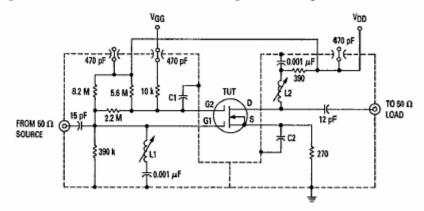


|   | TO-72     |       |             |       |  |  |
|---|-----------|-------|-------------|-------|--|--|
|   | Inc       | hes   | Millimeters |       |  |  |
|   | Min       | Max   | Min         | Max   |  |  |
| Α | -         | 0.230 |             | 5.840 |  |  |
| В | -         | 0.195 | -           | 4.950 |  |  |
| С | 4         | 0.210 | -           | 5.330 |  |  |
| D |           | 0.021 | 380         | 0.530 |  |  |
| E | -         | 0.030 | -           | 0.760 |  |  |
| F | 150       | 0.019 | (8)         | 0.480 |  |  |
| G | 0.100     | BSC   | 2.540 BSC   |       |  |  |
| Н | -         | 0.046 |             | 1.170 |  |  |
| J | 140       | 0.048 | (4)         | 1.220 |  |  |
| K | 0.500     | -     | 12.700      | 9.0   |  |  |
| L | 0.250     |       | *           | 6.350 |  |  |
| M | 45° BSC   |       | 45° BSC     |       |  |  |
| N | 0.050 BDC |       | 1.270 BSC   |       |  |  |
| Р | - 2       | 0.050 | (4)         | 1.270 |  |  |






High-reliability discrete products and engineering services since 1977


# MFE211-MFE212

### **DUAL GATE MOSFETS**



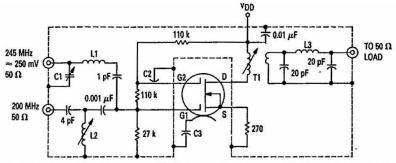
C1, C2 & C3: Leadless disc ceramic, 0,001 µF C4: ARCO 462, 5-80 pF, or equivalent L1: 3 Turns #18, 3/16" diameter aluminum slug L2: 8 Turns #20, 3/16" diameter aluminum slug

Figure 1. 200 MHz Power Gain, Gain Control Voltage, and Noise Figure Test Circuit for MFE211



C1: Leadless disc ceramic, 0.001  $\mu F$  C2: Leadless disc ceramic, 0.01  $\mu F$ 

L1: 8 Turns #28, 5/32" diameter form, type "J" slug L2: 9 Turns #28, 5/32" diameter form, type "J" slug


Figure 2. 45 MHz Power Gain and Noise Figure Test Circuit for MFE211



High-reliability discrete products and engineering services since 1977

### MFE211-MFE212

**DUAL GATE MOSFETS** 



L1: 7 Turns #34, 1/4" diameter aluminum slug L2: 5-1/2 Turns #20, 1/4" diameter aluminum slug L3: 7 Turns #24, 1/4" diameter air core C1: Arco type 462, 5–80 pF C2: 0.001 µF leadless disc C3: 0.01 µF leadless disc T1: Pri: 25 Turns #30, close wound on 1/4" diameter form, type "J" slug Sec: 4 Turns #30, centered over primary

Figure 3. 200 MHz-to-45 MHz Circuit for Conversion Power Gain for MFE212

#### TYPICAL CHARACTERISTICS

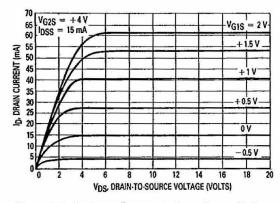



Figure 4. Drain Current versus Drain-to-Source Voltage

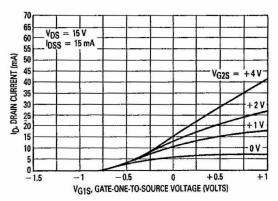



Figure 5. Drain Current versus Gate-One-to-Source Voltage

#### SMALL-SIGNAL COMMON-SOURCE PARAMETER

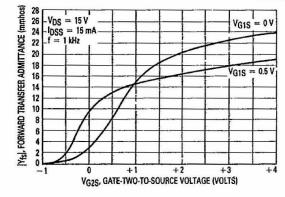



Figure 6. Forward Transfer Admittance versus Gate-Two-to-Source Voltage

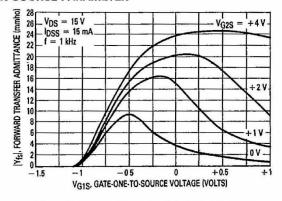



Figure 7. Forward Transfer Admittance versus Gate-One-to-Source Voltage



High-reliability discrete products and engineering services since 1977

### MFE211-MFE212

**DUAL GATE MOSFETS** 

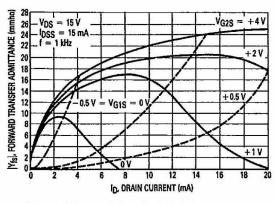



Figure 8. Forward Transfer Admittance versus

Drain Current

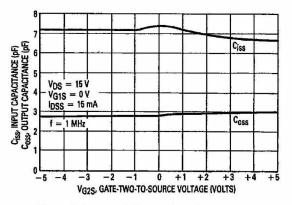



Figure 9. Input and Output Capacitance versus Gate-Two-to-Source Voltage

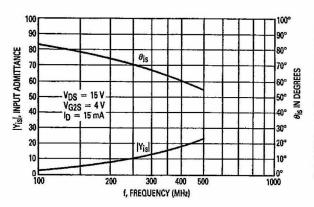



Figure 10. Small-Signal Gate-One Input Admittance versus Frequency

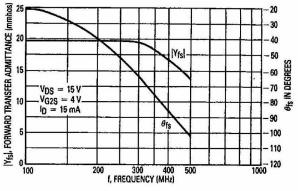



Figure 11. Small-Signal Forward Transfer Admittance versus Frequency

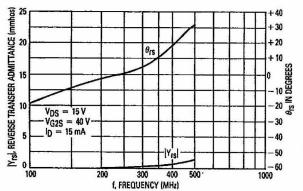



Figure 12. Small-Signal Gate-One Reverse Transfer Admittance versus Frequency

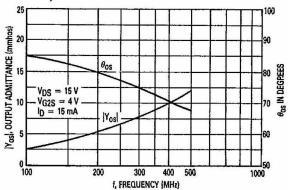



Figure 13. Small-Signal Gate-One Output Admittance versus Frequency



High-reliability discrete products and engineering services since 1977

# MFE211-MFE212

**DUAL GATE MOSFETS** 

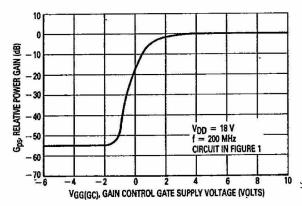



Figure 14. Relative Small-Signal Power Gain versus **Gain Control Gate Supply Voltage MFE211** 

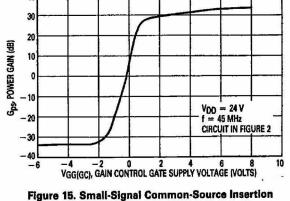



Figure 15. Small-Signal Common-Source Insertion Power Gain versus Gain Control Gate Supply Voltage

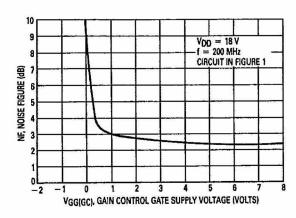



Figure 16. Common Source Spot Noise Figure versus **Gain Control Gate Supply Voltage** 

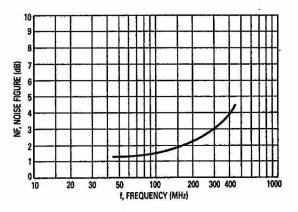



Figure 17. Optimum Spot Noise Figure versus Frequency