

High-reliability discrete products and engineering services since 1977

MC264-4-MC264-12

SILICON CONTROLLED RECTIFIERS

FEATURES:

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number
- Available Non-RoHS (standard) or RoHS compliant (add PBF suffix)

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Peak Repetitive Forward and Reverse Blocking Voltage (1)	MCR264-4 MCR264-6		200 400	
(T _J = 25 to 125°C, Gate Open)	MCR264-8 MCR264-10 MCR264-12	V _{DRM} V _{RRM}	600 800 1000	Volts
Forward Current (T _c = 80°C) (All Conduction Angles)		I _{T(RMS)} I _{T(AV)}	40 25	Amps
Peak Non-Repetitive Surge Current – 8.3ms (1/2 Cycle, Sine Wave) 1.5ms		I _{TSM}	400 450	Amps
Forward Peak Gate Power		P _{GM}	20	Watts
Forward Average Gate Power		P _{G(AV)}	0.5	Watt
Forward Peak Gate Current (300μs, 120PPS)		I _{GM}	2	Amps
Operating Junction Temperature Range		Tı	-40 to +125	°C
Storage Temperature Range		T _{stg}	-40 to +150	°C
Thermal Resistance, Junction to Case		R _{θJC}	1	°C/W
Thermal Resistance, Junction to Ambient		$R_{\theta JA}$	60	°C/W

Note 1: V_{DRM} and V_{BRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

These devices are rated for use in applications subject to high surge conditions. Care must be taken to ensure proper heat sinking when the device is to be used at high sustained currents.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Characteristics		Symbol	Min	Тур	Max	Unit
Peak Forward or Reverse Blocking Current	T _J = 25°C	1 1	-	-	10	μΑ
$(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM}, \text{ Gate Open})$	$T_J = 125$ °C	I _{DRM} , I _{RRM}	-	-	2	mA
Forward "On" Voltage (2) (I _{TM} = 80A)		V _{TM}	-	1.4	2	Volts
Gate Trigger Current (Continuous dc)			-	15	50	mA
(Anode Voltage = 12 Vdc, R_L = 100 Ohms, T_C = -40°C)		I _{GT}	-	30	90	IIIA
Gate Trigger Voltage (Continuous dc) (Anode Voltage = 12 Vdc, R _L = 100 Ohms)		V _{GT}	-	1	1.5	Volts
Gate Non-Trigger Voltage (Anode Voltage = Rated V _{DRM} , R _L = 100 Ohms, T _J = 125°C)		V _{GD}	0.2	-	-	Volts
Holding Current (Anode Voltage = 12 Vdc)		I _H	-	30	60	mA
Turn-On Time (I _{TM} = 40 A, I _{GT} = 60 mAdc)		t _{gt}	-	1.5	-	μs
Critical Rate-of-Rise of Off-State Voltage (Gate Open, V _D = Rated V _{DRM} , Exponential Waveform)		dv/dt	-	50	-	V/µs

Note 2: Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.

High-reliability discrete products and engineering services since 1977

MECHANICAL CHARACTERISTICS

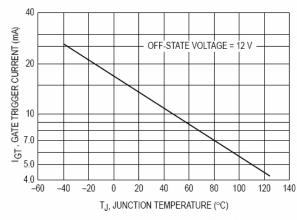
Case	ase TO-220AB	
Marking Body painted, alpha-numeric		
Polarity	Cathode band	

Pin 1: Cathode Pin 2: Anode Pin 3: Gate Pin 4: Anode (Case)

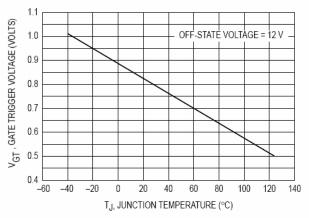
MC264-4-MC264-12

SILICON CONTROLLED RECTIFIERS

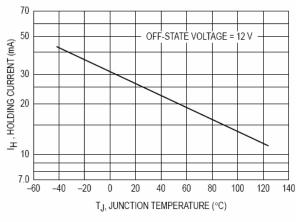
	TO-220 A B				
	Inches		Millim	neters	
	Min	Max	Min	Max	
Α	0.575	0.620	14.600	15.750	
В	0.380	0.405	9.650	10.290	
С	0.160	0.190	4.060	4.820	
D	0.025	0.035	0.640	0.890	
F	0.142	0.147	3.610	3.730	
G	0.095	0.105	2.410	2.670	
Н	0.110	0.155	2.790	3.930	
J	0.014	0.022	0.360	0.560	
K	0.500	0.562	12.700	14.270	
L	0.045	0.055	1.140	1.390	
N	0.190	0.210	4.830	5.330	
Q	0.100	0.120	2.540	3.040	
R	0.080	0.110	2.040	2.790	
S	0.045	0.055	1.140	1.390	
T	0.235	0.255	5.970	6.480	
U		0.050	- 1	1.270	
٧	0.045	20	1.140	r i	
Z	-	0.080		2.030	

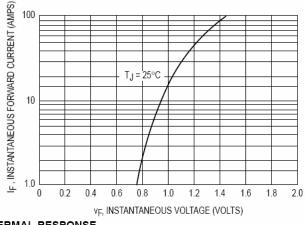


High-reliability discrete products and engineering services since 1977


MC264-4-MC264-12

SILICON CONTROLLED RECTIFIERS


FIGURE 3 — GATE TRIGGER CURRENT


FIGURE 4 — NEW GATE TRIGGER VOLTAGE

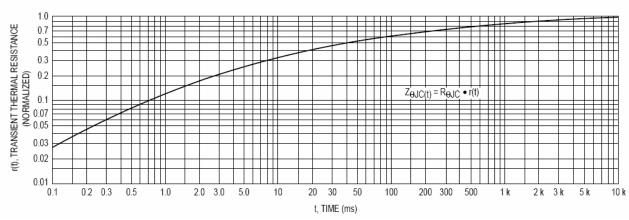

FIGURE 5 — HOLDING CURRENT

FIGURE 6 — TYPICAL FORWARD VOLTAGE

FIGURE 7 — THERMAL RESPONSE

