High-reliability discrete products and engineering services since 1977 ### 3N204-3N205 ### DUAL GATE MOSFET VHF AMPLIFIER #### **FEATURES** - Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number. - Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix. #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | | |--|------------------|------------|--------|--| | Drain-source voltage | V _{DS} | 25 | Vdc | | | Paris and another a | V_{DG1} | 30 | Vdc | | | Drain-gate voltage | V _{DG2} | 30 | | | | Drain current | I _D | 50 | mAdc | | | Character | I _{G1} | ±10 | A - - | | | Gate current | I _{G2} | ±10 | mAdc | | | Total device dissipation @ T _A = 25°C | P _D | 360 | mW | | | Derate above 25°C | rD | 2.4 | mW/°C | | | Total device dissipation @ T _C = 25°C | P _D | 1.2 | W | | | Derate above 25°C | PD | 8.0 | mW/°C | | | Lead temperature | T∟ | 300 | °C | | | Junction temperature range | T _J | -65 to 175 | °C | | | Storage temperature range | T _{stg} | -65 to 175 | °C | | ### **ELECTRICAL CHARACTERISTICS (T**_C = 25°C) | Characteristics | Symbol | Min | Max | Unit | | |--|-----------------------|----------|-------|-------|--| | OFF CHARACTERISTICS | OFF CHARACTERISTICS | | | | | | Drain-Source Breakdown Voltage (I_D =10 μ A, V_{G1} = V_{G2} =-5.0V) | $V_{(BR)DSX}$ | 25 | - | Vdc | | | Gate 1-Source Breakdown Voltage (I _{G1} =+/- 10 mA) _{Note 1} | V _{(BR)G1SO} | +/-6 | +/-30 | Vdc | | | Gate 2-Source Breakdown Voltage (I _{G2} =+/-10mA) Note 1 | V _{(BR)G2SO} | +/-6 | +/-30 | Vdc | | | Gate 1 Leakage Current
(V _{G1S} =+/-5.0V, V _{G2S} =V _{DS} =0) | I _{G1SS} | - | +/-10 | nA | | | Gate 2 Leakage Current
(V _{G2S} =+/-5.0V, V _{G1S} =V _{DS} =0) | I _{G2SS} | - | +/-10 | nA | | | Gate 1 to Source Cutoff Voltage $(V_{DS}=15V, V_{G2S}=4.0V, I_D=20\mu A)$ | V _{G1S(off)} | -0.5 | -4.0 | Vdc | | | Gate 2 to Source Cutoff Voltage $(V_{DS}=15V,V_{G1S}=0V,I_D=20\mu A)$ | V _{G2S(off)} | -0.2 | -4.0 | Vdc | | | ON CHARACTERISTICS | | | | | | | Zero-Gate-Voltage Drain Current * (V _{DS} =15V, V _{G2S} =4.0V, V _{G1S} =0V) | I _{DSS} * | 6 | 30 | mA | | | SMALL SIGNAL CHARACTERISTICS | | | | | | | Forward Transfer Admittance $(V_{DS}=15V, V_{G2S}=4.0V, V_{G1S}=0V, f=1.0kHz)_{Note 2}$ | Y _{fs} | 10 | 22 | mmhos | | | Input Capacitance $(V_{DS}=15V, V_{G2S}=4.0V, I_D=I_{DSS}, f=1.0Mhz)$ | C _{iss} | TYP.3.0 | | pF | | | Reverse Transfer Capacitance
(V _{DS} =15V, V _{G2S} =4.0V, I _D =10mA, f=1.0MHz) | C _{rss} | 0.005 | 0.03 | pF | | | Output Capacitance $(V_{DS}=15V, V_{G2S}=4.0V, I_D=I_{DSS}, f=1.0MHz)$ | C _{oss} | TYP. 1.4 | | pF | | # High-reliability discrete products and engineering services since 1977 # 3N204-3N205 ### DUAL GATE MOSFET VHF AMPLIFIER #### FUNCTIONAL CHARACTERISTICS | Noise Figure | | | | | |---|----------------------|------------|------------|-----| | (V _{DD} =18V, V _{GG} =7.0V, f=200MHz)
3N204 | NF | | | dB | | (V _{DS} =15V, V _{G2S} =4.0v, I _D =10mA, f=450MHZ)
3N204 | | - | 3.5
5.0 | | | Common Source Power Gain $(V_{DD}{=}18V,V_{GG}{=}7.0V,f{=}200MHz) \\ 3N204 \\ (V_{DS}{=}15V,V_{G2S}{=}4.0V,I_{D}{=}10mA,f{=}450MHz) \\ 3N204$ | G _{ps} | 20
14 | 28
- | dB | | $\label{eq:bandwidth} \begin{array}{l} \textbf{Bandwidth} \\ (V_{DD}\!=\!18V, V_{GG}\!=\!7.0V, f\!=\!200\text{MHz}) \\ 3N204 \\ (V_{DD}\!=\!18V, f_{LO}\!=\!245\text{MHz}, f_{RF}\!=\!200\text{MHz})_{Note~4} \\ 3N205 \end{array}$ | BW | 7.0
4.0 | 12
7.0 | MHz | | Gain Control Gate Supply Voltage _(Note 3) $(V_{DD}=18V, \triangle GPS=300dB, f=200MHz)$ $3N204$ | V _{GG(GC)} | 0 | -2.0 | Vdc | | Conversion Gain (Note 4) (V_{DD} =18V, f_{LO} =245MHz, f_{RF} =200MHz) 3N205 | G _(conv.) | 17 | 28 | dB | ^{*}PW=30µs, Duty Cycle ≤ 2.0%. ¹⁾ All gate breakdown voltages are measured while the device is conducting rated gate current. This insures that the gate voltage limiting network is functioning properly. ²⁾ This parameter must be measured with bias voltages applied for less than five (5) seconds to avoid overheating. ³⁾ $\triangle G_{ps}$ is defined as the change in G_{ps} from the value at $V_{GG}\text{=}7.0V.$ ⁴⁾ Amplitude at input from local oscillator is 3 volts RMS. High-reliability discrete products and engineering services since 1977 ### **MECHANICAL CHARACTERISTICS** | Case: | TO-72 | | |----------|-----------------------------|--| | Marking: | Body painted, alpha-numeric | | | Pin out: | See below | | | | TO-72 | | | | | |---|-----------|--------|-----------|-------------|--| | | Inc | Inches | | Millimeters | | | | Min | Max | Min | Max | | | Α | 100 | 0.230 | 100 | 5.840 | | | В | 12 | 0.195 | 740 | 4.950 | | | С | | 0.210 | - | 5.330 | | | D | (4) | 0.021 | 360 | 0.530 | | | E | 252 | 0.030 | - | 0.760 | | | F | 953 | 0.019 | (+) | 0.480 | | | G | 0.100 BSC | | 2.540 BSC | | | | Н | 150 | 0.046 | 3.00 | 1.170 | | | J | 3-2% | 0.048 | 741 | 1.220 | | | K | 0.500 | - | 12.700 | 7 | | | L | 0.250 | - | - | 6.350 | | | M | 45° BSC | | 45° BSC | | | | N | 0.050 BDC | | 1.270 BSC | | | | Р | (2) | 0.050 | 74% | 1.270 | | # 3N204-3N205 DUAL GATE MOSFET VHF AMPLIFIER