

High-reliability discrete products and engineering services since 1977

BIDIRECTIONAL TRIODE THYRISTORS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
Peak repetitive off-state voltage			
SC250B, SC251B, S250B3		200	
SC250D, SC251D, S250D3	V _{DRM}	400	Volts
SC250E, SC251E, S250E3		500	
SC250M, SC251M, S250M3		600	
Forward on-state current RMS	I _{T(RMS)}	15	Amps
Peak forward surge current			A
(one cycle, sine wave, 60Hz)	I _{TSM}	100	Amps
Circuit fusing considerations			
(t = 1ms)	l ² t	20	A ² s
(t = 8.3ms)		41.5	
Peak gate power	P _{GM}	10	Watts
Average gate power	P _{G(AV)}	0.5	Watts
Peak gate power (pulse width = 10µs)	I _{GM}	2	Amps
Operating junction temperature range	Tj	-40 to +115	°C
Storage temperature range	T _{stg}	-40 to +125	°C
Stud torque		30	In. lb.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Maximum	Unit
Thermal resistance, junction to case			
SC250, SC251	R _{eJC}	2.0	°C/W
SC250()3		2.3	

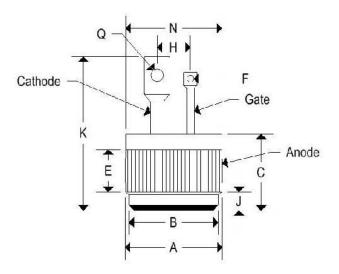
ELECTRICAL CHARACTERISTICS ($T_c = 25^{\circ}C$ and either polarity of MT2 to MT1 voltage, unless otherwise noted)

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Peak forward blocking current					
$(V_D = rated V_{DRM}, gate open)$	l				mA
T _c = 25°C	I _{DRM}	-	-	0.1	IIIA
T _c = 115°C		-	-	0.5	
Peak on-state voltage	VT				Volts
(I_{TM} = 21A peak, pulse width = 1ms, duty cycle \leq 2%)	ν _T	-	-	1.65	VUILS
Critical rate of rise of off-state voltage					Muc
(Rated V_{DRM} , gate open, exponential waveform, $T_{C} = 115^{\circ}C$)	dv/dt	100	-	-	V/µs
Critical rate of rise of commutating off-state voltage (1)					
$(I_{T(RMS)} = Rated RMS on state current, V_D = V_{DRM}$, gate open, commutating					
di/dt = 8A/ms)	dv/dt(c)				V/µs
SC250, SC251: T _c = 84°C		4	-	-	
SC250()3: T _c = 78°C		4	-	-	

High-reliability discrete products and engineering services since 1977

BIDIRECTIONAL TRIODE THYRISTORS

Gate trigger current					
(V _D = 12V)					
MT2(+), G(+); MT2(-), G(-); R _L = 100Ω)	I _{GT}	-	-	50	mA
MT2(+), G(-);R _L = 50Ω)		-	-	50	
Gate trigger current					
$(V_D = 12V, T_C = -40^{\circ}C)$	I _{GT}				mA
MT2(+), G(+); MT2(-), G(-); R _L = 50Ω)	IG I	-	-	80	IIIA
MT2(+), G(-);R _L = 25Ω)		-	-	80	
Gate trigger voltage					Volts
(V _D = 12V)	V _{GT}				
MT2(+), G(+); MT2(-), G(-); R _L = 100Ω)		-	-	2.5	
MT2(+), G(-);R _L = 50Ω)		-	-	2.5	
Gate trigger voltage	V _{GT}				Volts
(V _D = 12V, T _C = -40°C)					
MT2(+), G(+); MT2(-), G(-); R _L = 50Ω)		-	-	3.5	
MT2(+), G(-);R _L = 25Ω)		-	-	3.5	
DC gate non-trigger voltage (all trigger modes)	V _{GD}				Volts
(V_D = Rated V_{DRM} , R_L = 1k Ω , T_C = 115°C)		0.20	-	-	
Holding current	I _H				mA
$(V_D$ = 24V, peak initiating current = 0.5A, pulse width = 0.1 to 10ms, gate trigger source = 7V, 20 Ω					
T _C = 25°C		-	-	50	
$T_{C} = -40^{\circ}C$		-	-	100	
Latching current	IL.				mA
$(V_{\text{D}}$ = 24V, gate trigger source = 15V, pulse width = 50 $\mu\text{s},$ maximum rise and fall times)					
MT2(+), G(+); MT2(-), G(-)					
MT2(+), G(-), T _c = 25°C		-	-	100	
MT2(+), G(+); MT2(-), G(-)					
MT2(+), G(-), T _c = -40°C		-	-	200	



High-reliability discrete products and engineering services since 1977

BIDIRECTIONAL TRIODE THYRISTORS

MECHANICAL CHARACTERISTICS

Case	Digi PF2 (SC251 Series)	
Marking	Body painted, alpha-numeric	
Polarity	Cathode is stud	

	DIGI PF2				
	Inc	hes	Millin	neters	
	Min	Max	Min	Max	
A	0.501	0.505	12.730	12.830	
В	0.465	0.475	11.810	12.060	
С	0.330	0.380	8.390	9.650	
Е	0.100	1000	2.540		
F	0.035	0.085	0.890	2.160	
J	0.080	0.097	2.040	2.460	
Κ		0.800	1752	20.320	
Ν		0.510	(-)	12.950	
Q	0.065	0.160	1.650	4.060	

High-reliability discrete products and engineering services since 1977

BIDIRECTIONAL TRIODE THYRISTORS

Max

13.793

13.970

14.301

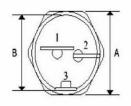
30.303

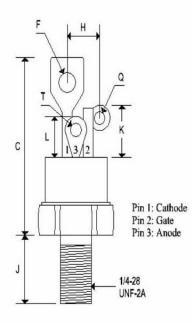
11.507

4.191

1.905

Case	TO-48 (SC250 Series)
Marking	Body painted, alpha-numeric
Polarity	Cathode is stud


Note: Contour and angular orientation of terminals 1 and 2 with respect to hex portion and to each other are optional.



High-reliability discrete products and engineering services since 1977

BIDIRECTIONAL TRIODE THYRISTORS

Case	TO-48 ISO (SC250()3 Series)
Marking	Body painted, alpha-numeric
Polarity	Cathode is stud

	TO-48 ISO				
	Inches		Millimeters		
	Min	Max	Min	Max	
Α	0.551	0.559	14.000	14.200	
В	0.501	0.505	12.730	12.830	
С	4	1.280	÷	32.510	
F		0.160		4.060	
Η	-	0.265	-	6.730	
J	0.420	0.455	10.670	11.560	
K	0.300	0.350	7.620	8.890	
L	0.255	0.275	6.480	6.990	
Q	0.055	0.085	1.400	2.160	
T	0.135	0.150	3.430	3.810	

High-reliability discrete products and engineering services since 1977

BIDIRECTIONAL TRIODE THYRISTORS

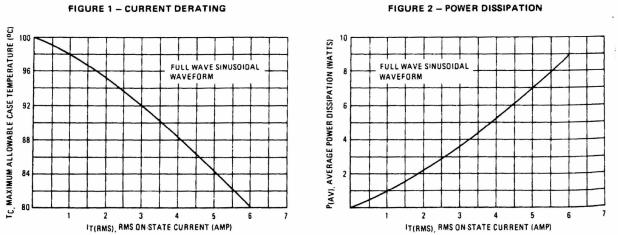


FIGURE 2 - POWER DISSIPATION