

Semiconductors
High-reliability discrete products and engineering services since 1977

C122 SERIES

SILICON CONTROLLED RECTIFIERS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS ($\mathrm{Sn} / \mathrm{Pb}$ plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Characteristics	C122F	C122A	C122B	C122C	C122D	C122E	C122M	Units
$\mathrm{V}_{\text {RROM }}{ }^{\Delta} \mathrm{V}_{\text {DROM }}{ }^{\text {- }}$	50	100	200	300	400	500	600	V
$\mathrm{I}_{\text {(RMS) }}\left(\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}, \boldsymbol{\theta}=180^{\circ}\right.$)	8							A
ITSM for one full cycle of applied principal voltage $\begin{array}{r} 400 \mathrm{~Hz} \\ 60 \mathrm{~Hz} \\ 50 \mathrm{~Hz} \\ \hline \end{array}$	$\begin{gathered} 200 \\ 100 \\ 85 \end{gathered}$							A
$\mathrm{di} / \mathrm{dt} \quad \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DROM, }}, \mathrm{I}_{\mathrm{GT}}=80 \mathrm{~mA}, \mathrm{t}_{\mathrm{r}}=0.5 \mu \mathrm{~s}$	100							A/ $/$ s
$1^{2} \mathrm{t} \quad \mathrm{T}_{\mathrm{J}}=-65$ to $+100^{\circ} \mathrm{C}, \mathrm{t}=1$ to 8.3 ms	40							$\mathrm{A}^{2} \mathrm{~s}$
P_{GM} * (for $10 \mu \mathrm{~s}$ max)	16							W
$\mathrm{P}_{\mathrm{G}(\mathrm{AV})}$ * (averaging time $=10 \mathrm{~ms}$ max)	0.5							W
$\mathrm{T}_{\text {stg }}$	-65 to +150							${ }^{\circ} \mathrm{C}$
Tc	-65 to +100							${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {T }}$ During soldering for 10 s maximum	250							${ }^{\circ} \mathrm{C}$

\triangle These values do not apply if there is a positive gate signal. Gate must be open or negatively biased.

* Any values of peak gate current or peak gate voltage which result in equal or lower power are permissible.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Characteristics	Limits			Units
	Min	Typ	Max	
Idom or $I_{\text {rom }}$ $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DROM }}$ or $\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RROM, }} \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	-	0.1	0.5	mA
$\begin{aligned} & \mathrm{V}_{\mathrm{T}} \\ & \mathrm{I}_{\mathrm{T}}=16 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$	-	1.45	1.83	V
I_{Gt} $V_{D}=12 V(D C), R_{L}=30 \Omega, T_{C}=25^{\circ} \mathrm{C}$	-	10	15	mA
$\begin{aligned} & V_{G T} \\ & V_{D}=12 \mathrm{~V}(D C), R_{L}=30 \Omega, T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	-	1.0	1.5	V
$\begin{aligned} & \mathbf{I}_{\mathrm{Ho}} \\ & \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \end{aligned}$	-	20	30	mA
$\begin{aligned} & \mathrm{dv} / \mathrm{dt} \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DROM}} \text { exponential voltage rise, } \mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$	10	100	-	$\mathrm{V} / \mu \mathrm{s}$
$\mathbf{t g t}_{\mathrm{gt}}$ $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DROM}}, \mathrm{I}_{\mathrm{T}}=4.5 \mathrm{~A}, \mathrm{I}_{\mathrm{T}}=2 \mathrm{~A}, \mathrm{I}_{\mathrm{GT}}=80 \mathrm{~mA}, 0.1 \mu \mathrm{~s}$ rise time, $\mathrm{T}_{\mathrm{C}}=$ $25^{\circ} \mathrm{C}$	-	1.6	2.5	$\mu \mathrm{s}$
t_{a} $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DROM}}, \mathrm{I}_{\mathrm{T}}=2 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=50 \mu \mathrm{~s}, \mathrm{dv} / \mathrm{dt}=200 \mathrm{~V} / \mu \mathrm{s}$, $\mathrm{di} / \mathrm{dt}=-10 \mathrm{~A} / \mu \mathrm{s}, \mathrm{I}_{\mathrm{GT}}=200 \mathrm{~mA} @ \mathrm{t}_{\mathrm{ON}}, \mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$	-	10	35	$\mu \mathrm{s}$
$\mathrm{R}_{\text {өfi }}$	-	-	1.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Reja	-	-	75	

Semiconductors

High-reliability discrete products and engineering services since 1977

MECHANICAL CHARACTERISTICS

Case:	TO-220AB
Marking:	Body painted, alpha-numeric
Polarity:	Cathode band

	TO-220AB			
	Inches		Millimeters	
	Min	Max	Min	Max
A	0.575	0.620	14.600	15.750
B	0.380	0.405	9.650	10.290
C	0.160	0.190	4.060	4.820
D	0.025	0.035	0.640	0.890
F	0.142	0.147	3.610	3.730
G	0.095	0.105	2.410	2.670
H	0.110	0.155	2.790	3.930
J	0.014	0.022	0.360	0.560
K	0.500	0.562	12.700	14.270
L	0.045	0.055	1.140	1.390
N	0.190	0.210	4.830	5.330
Q	0.100	0.120	2.540	3.040
R	0.080	0.110	2.040	2.790
S	0.045	0.055	1.140	1.390
T	0.235	0.255	5.970	6.480
U	-	0.050	-	1.270
V	0.045	-	1.140	-
Z	-	0.080	-	2.030

Fig. 1 - Power dissipation vs. on-state current.

Fig. 2 - Maximum allowable case temperature vs. on-state current.

- 르그NITRON" Semiconductors

High-reliability discrete products and engineering services since 1977

C122 SERIES

SILICON CONTROLLED RECTIFIERS

> Fig. 4 - Peak surge on-state currant and fusing current as a function of time.

Fig. 5 - Instantanaous on-state current vs.
insiantaneous on

Fig. 7 - DC gate-trigger voltage vs. case temperature.

Fig. 9 - Crinicel rete of rise of offestate voltage rs. case tamparafura.

Fig. 8 - Holding ourrent vs. case temperature.

Fig 10-Gato-controlled furn-on time va. gate
trigger ourrent.

Semiconductors
High-reliability discrete products and engineering services since 1977

C122 SERIES

SILICON CONTROLLED RECTIFIERS

Fig. 11 - Rate of change of on-state currant with thime (dotiting diviti).

Fig. 12 - Rate of rise of off-state valtage with time (dorining critioni dv/dt)

Fig. 13 - Relationship bofween instantaneous onstate current and yoittage, showing relerence points for mpasuroment of circuil-commutated tum-olf time (t_{9})

