

High-reliability discrete products and engineering services since 1977

2N5431

PN UNIJUNCTION TRANSISTOR

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit			
RMS power dissipation (1)	P _D	360	mW			
RMS emitter current	l _e	50	mA			
Peak pulse emitter current (2)	l _e	1.5	Amp			
Emitter reverse voltage	V_{B2E}	30	Volts			
Interbase voltage ⁽³⁾	V_{B2B1}	35	Volts			
Operating junction temperature range	T,	-65 to +125	°C			
Storage temperature range	T_{stg}	-65 to +200	°C			

- 1. Derate 3 mW/°C increase in ambient temperature.
- Duty cycle ≤ 1%, PRR = 10 PPS.
- 3. Based upon power dissipation at $T_A = 25$ °C.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Characteristic	Symbol	Min	Max	Unit
Intrinsic standoff ratio $^{(1)}$ (V _{B2B1} = 10V)	ŋ	0.72	0.80	-
Interbase resistance $(V_{B2B1}=3V,I_E=0)$	R_{BB}	6	8.5	kΩ
Interbase resistance temperature coefficient $(V_{B2B1}=3V,I_E=0,T_A=0\ to\ 100^{\circ}C)$	$lpha R_{BB}$	0.4	0.8	%/°C
Emitter saturation voltage (2) (V _{B2B1} = 10V, I _E = 50mA)	V _{EB1(sat)}	-	3	Volts
Modulated interbase current $(V_{B2B1} = 10V, I_E = 50mA)$	I _{B2(mod)}	5	30	mA
Emitter reverse current $(V_{B2E} = 30V, I_{B1} = 0)$	I _{EB2O}	-	10	nA
Peak point emitter current (V _{B2B1} = 25V) (V _{B2B1} = 4V)	I _P	-	0.4 4	μА
Valley point current (2) (V _{B2B1} = 20V, R _{B2} = 100ohms)	I _V	2	-	mA
Base one peak pulse voltage (V _{BB} = 4V)	V _{OB1}	1	-	Volts

^{1.} η. Intrinsic standoff ratio is defined in terms of the peak point voltage, V_P, by means of the equation: V_P = ηV_{B2B1} + V_F, where V_F is about 0.45V at 25°C @ I_F = 10μA and decreases with temperature at about 2.5 mV/°C. Components R₁, C₁ and the UJT form a relaxation oscillator, the remaining circuitry serves as a peak voltage detector. The forward drop of diode D₁ compensates for V_F. To use, the "cal" button is pushed, and R₃ is adjusted to make the current meter, M₁, read full scale. When the "cal" button is released, the value of η is read directly from the meter, if full scale on the meter reads 1.

^{2.} PW = 300μ s, duty cycle $\leq 2\%$ to avoid internal heating, which may result erroneous readings.

High-reliability discrete products and engineering services since 1977

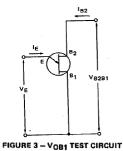
MECHANICAL CHARACTERISTICS

Case:	TO-18	
Marking:	Body painted, alpha-numeric	
Pin out:	See below	

2N5431

PN UNIJUNCTION TRANSISTOR

	TO-18				
Dim	Inches		Millimeters		
	Min	Max	Min	Max	
CD	0.178	0.195	4.520	4.950	
CH	0.140	0.210	3.556	5.330	
HD	0.209	0.230	5.310	5.840	
LC	0.100 TP		2.540 TP		
LD	0.016	0.021	0.410	0.530	
LL	0.500	0.750	12.700	19.050	
LU	0.016	0.019	0.410	0.480	
L ₁	,	0.050	•	1.270	
L ₂	0.250	-	6.350	-	
Р	0.100	-	2.540	-	
Q	-	0.040	ı	1.020	
TL	0.028	0.048	0.710	1.220	
TW	0.036	0.046	0.910	1.170	
α	45°TP		45°TP		



High-reliability discrete products and engineering services since 1977

2N5431

PN UNIJUNCTION TRANSISTOR

FIGURE 1 — UNIJUNCTION TRANSISTOR SYMBOL AND NOMENCLATURE

FIGURE 2 - STATIC EMITTER CHARACTERISTICS CURVES

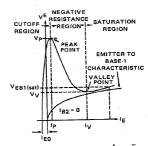
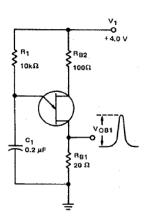
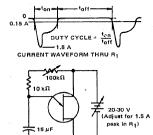




FIGURE 4 - 7 TEST CIRCUIT

FIGURE 5 - PRR TEST CIRCUIT AND WAVEFORM

